Gift Ideas That Support Wildlife

This festive season, why not consider giving a gift that will also support your local wildlife. Wildlife populations in the UK are facing serious threats and many species are in decline, however there are ways in which we can protect and help at-risk species by creating havens for wildlife in our own gardens. At NHBS we sell a range of products, from bird feeders to hedgehog houses, that can both bring joy to the recipient and benefit wildlife at the same time. We also sell a number of books that can help you create a wildlife friendly garden. We’ve put together a selection of some of our favourite items for you to browse below. 


Eco Hedgehog Hole Fence Plate

#242607 

Hedgehog numbers have dramatically declined in recent years. Creating a hole in a garden wall or fence will allow your local hedgehogs to pass through from garden to garden safely.

 

NHBS Wooden Bird Nest Box

#254495

Many bird species are struggling to find enough suitable natural nesting sites in the modern environment, but a bird box will provide a warm, sheltered substitute, with protection from most types of predators, helping to improve the chances of breeding success.

 

Froglio Frog and Toad House

#216744

The Frogilo Frog and Toad House provides a safe retreat for frogs and toads in any garden and is handmade in frost-resistant ceramic with a decorative glazed roof.

 

National Trust Apex Insect House

#251682

The National Trust Apex Insect House is an ideal addition to any wildlife friendly garden. With a variety of shelter types, it offers a perfect habitat for important invertebrates such as lacewings, ladybirds, and even some butterflies.

 

Bee Brick

#244140

Bee Bricks are made in Cornwall in England using the waste material from the Cornish China clay industry.  They provide much needed nesting space for solitary bee species such as red mason bees and leafcutter bees, both of which are non-aggressive.

 

Echoes Bird Bath

#195520

A large and beautifully coloured and glazed bird bath with a ‘ripple’ step design that is both visually attractive and functional by providing extra footing/grip for wild birds.

 

Defender Metal Seed Feeder

#238813

The Defender Feeder’s metal construction is tough, long lasting and offers excellent protection from squirrel damage.  The feeder is available with two, four or six feeding ports, each with a perching ring that allows birds to feed in a natural, forward facing position.

 

 

Hedgehog House

#234035

Hedgehog numbers are rapidly declining across the UK and providing a refuge in your garden with the Wildlife World Hedgehog House will help to protect hedgehogs from predators and disturbance.

 

RHS The Little Book of Wild Gardening

#257312

This is a guide for anyone wanting to garden in a more sustainable, natural way. Working with nature benefits not just the garden, but also the gardener, wildlife and the wider environment.

 

Gardening for Bumblebees

#252488

This shows you how you can provide a refuge for bumblebees to feed, breed and thrive. No matter how large or small your space is, Dave Goulson shows you how you can make a pollinator-friendly haven.

 

 

The Wildlife Pond Book

#246688

This offers a fresh and unique perspective on ponds, encouraging readers of any budget to reach for the spade and do something positive to benefit their shared neighbourhood nature.

 

Wildlife Gardening

#244291

If you want to attract more bees, birds, frogs and hedgehogs into your garden, look no further than this. Kate Bradbury offers tips on feeding your local wildlife and explains how you can create the perfect habitats for species you’d like to welcome into your garden.


Discover more great gift ideas on our website. Plus, check out our two blogs on how to attract wildlife to your garden.

The Naturalist’s Microscope Guide Part 1: Stereo Microscopes

When thinking of the varied toolkit of the enterprising naturalist, a microscope is perhaps not the first thing that springs to mind. Nevertheless, for many entomologists, botanists and comparative zoologists, the ever-reliable 10× hand lens eventually proves insufficient. Indeed, many species of insect, lichen and fungi (among many others) are difficult to identify past genus or even subfamily without the use of more powerful optics. Animal scat, small mammal dentition and hair fibres can be likewise difficult to evaluate without suitable magnification. But researching the best optical equipment for your purpose can be a disheartening task, especially for naturalists who are likely to come across a wide range of resources for the engineer and medical professional, but sparse pickings tailored to their own specific needs.

For most naturalists, the 3D image and relatively low magnification of the stereo microscope (also called the low-powered dissection microscope) fits the bill nicely. However, with several big-name brands, a wide range of price points and numerous specifications available for uses across a plethora of fields, it’s useful to be armed with some background knowledge when choosing your own microscope.

Stereo Microscopes

Stereo microscopes are made up of several parts: most include a base with or without illumination, a pillar with an adjustable bracket for the head and a head comprising of two eyepieces and one or two objective lenses, depending on whether the microscope uses the Greenough or Common Mains Objective design (discussed below). Some also include a third eyepiece or ‘photo tube’.

ultraZOOM-3 Stereo Zoom Microscope

Specifics regarding the different parts of the microscope will be discussed later, but for now, it is important to understand how magnification is calculated. The optics of a stereo microscope consist of two eyepiece lenses and one or two objective lenses with which they are paired. Each provides its own zoom – typically 10× for a standard eyepiece and 2× or 4× for the objective (although many objectives provide a range of magnifications between 2× and 4×, see below). The overall magnification is calculated by multiplying the objective and eyepiece lenses together, for example a system with 10× eyepieces and a 2× objective will provide a zoom of 20×. Some objectives have a dynamic zoom lens, as we’ll discuss later.

Optical Systems: Greenough vs Common Mains Objective

Stereo microscopes are grouped by the optical system that they use – Greenough or Common Mains Objective (CMO). Both systems have distinct advantages and disadvantages, so knowing the difference is vital.

A staple since its original conception in the 1890s, the Greenough Optical System works by angling two objective lenses towards each other to create a 3D image. The objectives have wide apertures for good light-gathering potential, providing a crisp, clear image. It is also cheap to produce, meaning that most entry- to mid-level stereo microscopes utilise this design. However, as the lenses are slightly tilted, the focus is not constant across the image – the outer left and right portions of the view are always slightly over-focused while the centre is clear. This is known as the ‘keystone effect’, and while it is often unconsciously corrected for by the human eye, it does cause the viewer to experience eye fatigue more rapidly than the alternative.

Introduced in the middle of the 20th century, the Common Mains Objective (CMO) system uses one objective lens that is shared by both eye pieces, allowing for exceptional light-gathering potential, and eliminating the keystone effect. However, the single objective leads to a problem known as ‘perspective distortion’, in which the centre of the image appears to be elevated like a fish-eye lens. Models that correct this can cost thousands of pounds, so for many naturalists, a high-end Greenough system is likely to be a better investment than a low-end CMO microscope.

Magnification

Once you’ve decided which system you would like to go for, consider the magnification. Most microscopes under £1,000 fall into the 20-40/45× range. Occasionally 60× models are offered in this bracket, but it’s definitely worth testing these before purchase as the extra range can come at the cost of features such as lens quality. Remember too that as zoom increases, the aperture of the lens decreases, making the image worse. For most insects above 2mm, a 20×-40× microscope should do the job. Groups that rely on minuscule features or genitalia dissections may require higher magnifications, but this often requires a better-quality microscope that uses high-quality parts to maintain a clear, bright image.

20x and 40x magnification of a Green Dock Beetle – Gastrophysa viridula

The cheapest stereo microscopes use a ‘fixed’ zoom system, with a single pair of objective lenses that provide one magnification, normally 20×. The objective (and sometimes the eyepieces) can be removed and replaced manually with a higher magnification alternative.

Models above the £150 mark generally use a rotating ‘turret’ system shared with compound microscopes. Two pairs of objective lenses are included and can be rotated into place, generally 2× and 4× allowing for 20× and 40× magnification. For the serious amateur naturalist looking to invest in a ‘workhorse’ style system, this is often the design to choose, and many professional entomologists and botanists spend years learning with such an optic.

Finally, stereo microscopes above around £300 generally use a dynamic zoom system. This allows the magnification to be altered across a range (normally 20-40×). The default 10× eyepiece can be swapped for a greater magnification if desired. Many also include a ‘click stop’ system for easy reading of the magnification without having to look up. The flexibility of these microscopes makes them the most popular choice among many naturalists.

The Head: Binocular vs Trinocular

This is simple but important to consider. While the binocular head is generally considered to be the default for stereo microscopes, the trinocular variant is extremely popular among researchers and anyone who seeks to document their microscopy: the addition of the third eyepiece (phototube) allows for a camera to be attached and images or video to be captured while the user is viewing the image. Many microscope cameras are designed to be used specifically with a phototube and will not function when used with a binocular head. Some, like the Moticam X3, can be used with either.

The Stand: Base, Stage Plate and Illumination

When choosing an illumination system, it is important to consider what you’ll be using your microscope for. You’ll often see plain (no illumination), halogen, or LED bases offered, with the plain option being the cheapest and LED the most expensive. Most illuminated bases offer both transmitted and reflected illumination, referring to the way in which light reaches the eye. The reflected system utilizes a light that shines straight down on the subject, reflecting the light off of the subject and into the user’s eye. This is the most commonly used design among naturalists, as the examination of opaque objects such as insects, plant material and mammal hairs requires the user to observe the sample’s upper surface.

Transmitted illumination utilizes a bulb beneath the sample, projecting light directly to the user’s eye, similar to a compound microscope. This is used in the examination of translucent samples such as aquatic invertebrates and some macroalgae.

This is also where stage plates come in. Sitting below the subject as the ‘background’ of the image, most microscopes come with opaque black and white options for use with the reflected illumination setting and a frosted glass option that light will shine through for use with transmitted illumination.

Motic ST-30C-6LED Stereo Microscope

Don’t immediately discount a plain base. Many naturalists prefer not to use built-in illumination that sits directly above the subject, as specimens that require the examination of fine details on the sample’s surface, such as many beetle species, can be difficult to ID under such a light. The best solution is to purchase a dedicated microscope illumination unit, a handy tool that usually includes two swan neck LEDs that can illuminate the subject from whichever angle is most auspicious. These aren’t cheap, but the cost of one is often covered by the money saved in purchasing a base without a built-in light.

Finally, consider the difference between halogen and LED illumination. For many purposes, such as the examination of bones, animal hair or water samples, this is irrelevant and largely comes down to a matter of taste. However, some materials are prone to desiccation under the heat of a halogen lamp. Therefore, particularly for entomological work and work involving live samples, LED illumination is often preferred.

More Information

The array of options that go alongside buying your first microscope can be daunting, but with a little consideration, you should be well set to explore the wonderful world of the tiny. Keep in mind your budget, and the microscope’s intended function, and you won’t go wrong. The information in this blog should be a strong starting point, but if you should want any more advice, feel free to get in touch with our friendly team of Wildlife Equipment Specialists via customer.services@nhbs.com or phone on 01803 865913. Our full range of stereo microscopes can be found here.

The Fate of Butterflies and Moths

White Admiral by Ian Watson-Loyd

Across the world, there have been significant declines in butterfly and moth populations. Since 1976, 76% of UK butterfly species have seen a decrease in abundance or distribution, with the abundance of larger moths declining by 33% since 1968. This trend is echoed across UK biodiversity, with 41% of all UK species declining since the 1970s. Butterflies and moths are clear indicators of the broader health of the environment; their decline is a stark warning about our natural world.

Marbled White by C. Mitson

The UK has 59 butterfly species, 57 of which are resident. There are around 2,500 species of moths in the UK, split into two groups: larger macro-moths and smaller micro-moths. Almost 70 species of butterfly and moth have become extinct in the last 100 years. A variety of threats have contributed to these extinctions and the general decline of other species, including the destruction of habitats and major land-use changes, such as the intensification of agriculture. Climate change, chemical pollution and artificial light at night have also all be identified as threats to UK populations.

Butterflies and moths have an intrinsic value in their own right, but they are also an important component in many ecosystems. They provide environmental services, including pollination and pest control and are prey for many other species, such as birds, bats and other insectivores. Butterflies and moths are also important ‘model’ organisms, used for centuries to investigate different areas of biological research and are key to understanding many diverse fields, such as pest control, mimicry, genetics and population dynamics.

The Big Butterfly Count 2021
Peacock Butterfly by Oliver Haines

Butterfly Conservation, a UK nonprofit environmental charity, is determined to reverse this decline. Their vision is a world where butterflies and moths thrive and can be enjoyed by everyone, everywhere. To help with the assessment of the health of our environment, Butterfly Conservation runs an annual nationwide citizen science survey, the Big Butterfly Count. Launched in 2010, it is the world’s biggest survey of butterflies.

Big Butterfly Count 2021 ran between 16th July and 8th August (read our blog to see how our NHBS staff got on this year). The results of this count showed that the overall number of butterflies recorded per count is at its lowest since the event began. Over 150,000 counts were registered this year, more than ever before, but the results showed that the populations of some of our most-loved species, such as the peacock butterfly (Aglais io), are suffering. Luckily, it’s not all bad news, as some species, such as the marbled white (Melanargia galathea), appear to be bouncing back from last year’s low numbers. But the significant, long-term decline of many butterfly and moth species in Britain is alarming.

Butterfly Conservation’s new strategy

In their new 2021-2026 strategy, launched in October 2021, Butterfly Conservation outlines a bold, ambitious road map to bringing abundance back to nature. After 16 months of reviewing their position in butterfly and moth conservation, they have defined three new strategic goals:

  1. Reduce the number of threatened species of butterflies and moths by half,
  2. Improve the condition of 100 of the most important landscapes for butterflies and moths,
  3. Transform 100,000 wild spaces in the UK, not just for butterflies and moths, but also for people.
Sussex Emerald by Ilia Ustyantsev via Flickr

To help them deliver their strategic goals, Butterfly Conservation have five initiatives. The first initiative is focused on recovery, through refocusing their science program to increase the understanding of why species are declining and how to recover their populations. They will also establish a new Threatened Species program, which will target conservation action for 65 species at serious risk. Butterfly Conservation will also expand their monitoring program to follow species recovery and gather data on a country-wide level. By 2026, they hope to have increased their species recovery actions by 65%.

The second initiative aims to inspire and enable more people to enjoy the natural world by improving access to learning, particularly for younger audiences. The third initiative is focused on uniting for wildlife, and the fourth is to tackle the threats species face, such as artificial light at night. They’ll achieve these goals by collaborating with a network of supporters and increasing their investment in research by 80% to establish five habitat quality indicators to better understand the impact of conservation work or policy changes. The final initiative focuses on managing land sustainably, by creating a land management advisory hub and delivering and demonstrating best practice land management for butterflies and months across landscapes.

Hummingbird Hawk-moth by Ian Watson-Loyd

Butterfly Conservation believes that the next five years are key and, through their bold new steps to conserve butterflies and moths, they can help to restore biodiversity, mitigate the climate crisis and start to rebuild the relationship between us and the natural world.

Useful resources

NHBS In the Field – Rigid 20w Skóros Moth Trap

Recently added to our range, the Rigid 20w Skóros Moth Trap is a lightweight portable moth trap, comparable to the successful Heath moth trap in design. Featuring a compact, rigid base that requires no preassembly, Skóros (from the Greek word for moth) is ideal for children, beginners or the seasoned lepidopterist looking for a portable, no-fuss trap.

We tested the Skóros in a small, suburban garden towards the end of the peak-trapping season in late August.

Use in the field

The first thing I was struck by while setting up the trap is how robust it feels. Despite weighing a mere 1.7kg, all the plastic parts are sturdy and indicate the trap could withstand many years of use. It’s relatively small in size when compared to Skinner moth trap designs, for example, making storage and transport easy.

The supplied 20w bulb is bright enough to have a successful attraction rate while not being overly intrusive to any immediate neighbours.

As previously mentioned, the rigid base requires no preassembly so set up is a straightforward affair; simply slot the three plastic vanes into the cone and place the lid on top. Finally, screw the supplied bulb into its fitting, taking care to handle it by its base rather than the fragile glass envelope. Remember to place egg boxes on the base underneath the cone so that any moths that fly into the trap have somewhere dry and dark to settle until they are released the next morning.

Checking the weather for favourable trapping conditions (preferably a calm, warm and dry night), the trap was deployed on a muggy, overcast August evening around dusk. This timing increases the chances of catching some of the crepuscular or day-flying species.

We left the trap tucked in the corner of the garden, taking advantage of the white garden wall to reflect some of the light and the 5m mains cable was suitably long enough to run alongside the wall through a nearby open window to be plugged in. The Skóros was left running from just before dusk to a little after sunrise.

What we found

Returning to the trap early in the morning we were greeted with a decent sized catch, perhaps smaller than some of the larger-based traps in our range but still enough to keep us busy examining and ID’ing for an hour or two!

Accessing the catch itself is also very straightforward; the plastic cone pops easily out of the base, allowing easy access to the egg boxes laid down the night before.

Many of the moths caught were starting to look a little ragged, but using a copy of Field Guide to the Moths of Great Britain and Ireland and some magnifying pots for the smaller micro-moths, we recorded the following list of species:

  • Knot grass (Acronicta rumicis)
    Purple bar (Cosmorhoe ocellata)
    • Brimstone
    • Lesser broad-bordered yellow underwing
    • Bird cherry ermine
    • Lime speck pug
    • Blood vein
    • Large yellow underwing
    • Flame shoulder
    • Square-spot rustic
    • Purple bar
    • Vines rustic
    • Mullein wave
    • Small square spot
    • Common carpet
    • Double-striped pug
    • Pale mottled willow
    • Several hard-to-definitively-ID micro-moths!

     

    Brimstone moth (Opisthograptis luteolata) and mullein wave (Scopula marginepunctata)

    It’s also worth noting several species perched themselves on the walls and foliage around the trap, so we would recommend searching the immediate area surrounding the trap where it has been running overnight.

    Our opinion

    The Skóros strikes a good balance between portability and affordability. Its no-fuss assembly, compact size and affordable price point makes it an ideal first moth trap for beginners or children.

    I did feel that the cylindrical base meant that there was less floor space on which to place egg boxes than some of the rectangular Heath traps, but considering the relatively small urban garden the trap was deployed in, it had a respectable catch and retention rate and the slight disadvantage of small floor space is easily offset by its ease-of-use and ergonomic design.


    The Rigid 20W Skóros Moth Trap can be found here. Our full range of moth traps can be found here.

    If you have any questions about our range or would like some advice on the right product for you then please contact us via email at customer.services@nhbs.com or phone on 01803 865913.

     

The Big Butterfly Count: NHBS Staff Results

Red Admiral – by G. Hagger

We have reached the end of the Big Butterfly Count 2021, which took place between Friday 16th July and Sunday 8th August. It’s the world’s biggest survey of butterflies and is aimed at assessing the health of our environment by recording the number of our most common butterflies and day-flying moths.

But don’t worry if you didn’t get to take part this year; it is an annual event, so make sure to look out for it next year! To take part, all you need to do is spend 15 minutes counting butterflies on a sunny day. You can count from anywhere you like, such as in the garden or park, in the woods or fields or wherever you find yourself outdoors.  You can submit your results online on the Big Butterfly Count website. For a list of handy butterfly ID guides as well as some tips on how to distinguish certain species, take a look at our previous blog post here

This count is extremely important as butterflies are vital to the ecosystem, as pollinators and within the food chain. Populations have decreased significantly since the 1970s, therefore monitoring butterfly numbers is crucial. We hope that more people have taken part this year, and, as always, many of our staff got involved. Scroll down to see what we found.

We’d also love to see what you’ve spotted if you took part – why not let us know in the comments below. 

Results

Catherine spotted all of these butterflies during her lunch break:

Small White: 10

Meadow Brown: 5

Gatekeeper: 9

Meadow Brown – by C. Mitson
Small White – by C. Mitson

 

 

 

 

 

Small Skipper – by O. Haines

Gemma found:

Large white: 2

Meadow brown: 2

Ringlet: 1

Red admiral: 1

 

 

Gatekeeper – by H. Ketley
Marbled White – by C. Mitson

 

 

 

 

 

 

 

Tonie did the butterfly count by the coast:

Meadow browns: 5

Red admiral: 2

Large white: 2

Small skipper: 2

Marbled white: 1

Gatekeeper – by C. Mitson
High Brown Fritillary – by H. Ketley
Speckled Wood – by A. Rietveld

 

 

 

 

 

 

 

I managed to complete a butterfly count at the end of a hike on Dartmoor:

Small white: 1

Meadow brown: 4

Gatekeeper: 1

Red admiral: 1

Meadow Brown – by C. Mitson

Angeline completed her big butterfly count in Plymouth:

Ringlet: 3

Small skipper: 2

Silver-Washed Fritillary – by A. Rietveld
Meadow Brown – by H. Ketley
Small Skipper – by A. Rietveld

 

 

 

 

 

 

 

Oli spotted:

Peacock – by O. Haines

Gatekeeper: 2

Small tortoiseshell: 1

Red admiral: 1

Peacock: 1

Ringlet: 1

Meadow brown: 1

Ringlet – by O. Haines

 

Gatekeeper – by A. Rietveld

Butterfly Conservation

For more information on UK butterflies and how you can help them, please visit Butterfly Conservation.org. Here you will find a wealth of information to help you find and identify butterflies and moths.

The NHBS Guide to UK Ladybird Beetle Identification

Colloquially known as ladybugs or ladybirds, these species are a well-known part of UK wildlife. Appearing in the nursery rhyme ‘Ladybird ladybird’, as the symbol for Ladybird Books, and in arts and crafts activities at school, they are a familiar sight for most of us from a young age. 

Ladybirds are beetles and belong to the family Coccinellidae. There are 26 species in the UK and they can be found in a variety of habitats such as grassland, woodland, and even your garden. There are several ways to survey ladybirds, for instance a sweep net or beating tray can be used to collect ladybirds, or you can fashion your own ladybird catcher by cutting off the top of an old plastic bottle. Holding the bottle upside down, a stick can be used to tap bushes and trees so that ladybirds can fall in the bottle. Please remember to be gentle and to return them to where you found them, or instead search for ladybirds by eye.

Other useful equipment include a hand lens, a field guide that also includes larval stages, and a pen and some paper to note your identifications. You can help broaden our knowledge of populations and distributions by recording your sightings through iRecord or by using the iRecord Ladybird apps. 

Identifying ladybirds is usually based on colouration and the number and pattern of spots, although these can sometimes vary between individuals of the same species. In this article, we’ll show several species you may encounter when looking for ladybirds.

7-spot ladybird (Coccinella septempunctata)

Distribution: Widespread, common

What to look for: This species has a bright red wing case with seven black spots, and a black and white pronotum (the hard plate behind the head). There is a very similar species named the scarce 7-spot ladybird (Coccinella magnifica). It is difficult to tell the two apart but the 7-spot has slightly smaller and rounder spots.

7-spot ladybird by Martin Cooper via Flickr
22-spot ladybird (Psyllobora vigintiduopunctata)

Distribution: Widespread across England but rarer in Scotland and Wales. 

What to look for: The 22-spot ladybird is one of the smaller UK species. It has a bright yellow wing case with 22 black spots, plus a yellow pronotum with 4 black spots.

22-spot ladybird by hedera.baltica via Flickr
Adonis ladybird (Hippodamia variegata)

Distribution: Scattered populations across Britain, numbers are increasing and can be quite frequent in suitable habitats

What to look for: This species has a more orange-red wing case, with several black spots and two white markings at the front. The number of black spots varies between individuals and can be between 3-15. Their pronotum is black and white, and they have either black or brown legs. 

Adonis ladybird by Lucas Large via Flickr
14-spot ladybird (Propylea quattuordecimpunctata)

Distribution: Widespread

What to look for: This species is yellow, with black, rectangular spots that meet each other, giving it an almost chequered appearance. They can, however, vary greatly in colour and pattern. Their wing cases can have a background colour of cream all the way to a lighter orange. Despite its name, it can have anywhere from 4-14 spots. 

14-spot ladybird by gailhampshire via Flickr
Larch ladybird (Aphidecta obliterata)

Distribution: Widespread in Britain

What to look for: The larch ladybird is a light tan brown, with muted patterning. There is occasionally a dark line along the back of the wing case where the two sides meet, and the occasional speckling of spots. The pronotum is usually a lighter, beige colour with an M-shaped mark in darker brown. 

Larch ladybird by S. Rae via Flickr
Kidney-spot Ladybird (Chilocorus renipustulatus)

Distribution: Found across England and Wales, but only in some parts of Scotland. 

What to look for: The kidney-spot ladybird is black, with two large red spots, one on each wing casing. There is a distinctly flattened rim around the edge of the wing casing. This species is usually found in well-wooded areas – look on tree trunks!

Kidney-spot ladybird by S. Rae via Flickr
Water ladybird (Anisosticta novemdecimpunctata)

Distribution: Widespread and frequent across England and Wales, but not in Scotland or Ireland.

What to look for: This species changes colour throughout the year! It has a more beige colouring, except in April-June when it turns a reddish colour. It is an elongated and flattish ladybird, with between 15-21 black spots. As its name suggests, it is usually found by the water, living in reedbeds and wetlands. 

Water ladybird by AJC1 via Flickr
Harlequin ladybird (Harmonia axyridis)

Distribution: Widespread in England, spreading in Wales, Scotland, and Ireland. 

What to look for: There is a large variation in the appearance of this species. They have brown legs and can have a red, orange, yellow, or black wing casing with up to 21 spots. The black forms usually have between 2-4 spots. Their pronotum may have several spots fused in an M or solid trapezoid shape. They are a large species, at approximately 7-8mm in length. 

Did you know? This is an introduced species and is considered invasive, as it outcompetes our native species, such as the 7-spot ladybird, for resources. It even eats other ladybirds’ eggs and larvae!

Harlequin ladybird by hedera.baltica via Flickr
16-spot ladybird (Tytthaspis sedecimpunctata)

Distribution: Widespread in southern England, occasionally found in parts of Wales.

What to look for: It has a beige colouration, although there are darker forms that appear more yellow or even slightly orange. It can have between 13-18 spots, with three to four fused together forming a line on either side of the wing case. It also has a solid black line down the middle of the wing case, and some spots on its pronotum. 

16-spot ladybird by gailhampshire via Flickr

Useful resources

Ladybirds jacket imageLadybirds
Paperback | May 2013

This revised and updated edition of Ladybirds provides a succinct but comprehensive and accessible overview of the biology of ladybirds and their parasites, focusing on ecology in an evolutionary context.

 

 

 

Field Guide to the Ladybirds of Britain and Ireland
Paperback | November 2018

This illustrated field guide covers all 47 species of ladybird occurring in Britain and Ireland in a handy and easy-to-use format. Each species account includes a description of field characters, similar species, life-cycle, food source, habitat and distribution.

 

 

 

A Field Guide to Harlequins and Other Common Ladybirds of Britain and Ireland
Paperback | March 2021

The invasive Harlequin ladybird can be very difficult to identify, with huge variation in colouration and pattern. This comprehensive photographic field guide is the first complete guide to identifying Harlequin ladybirds found in Britain and Ireland.  It also covers all the other 25 conspicuous ladybird species that occur.

 

 

Guide to Ladybirds of the British Isles
Unbound | April 2006

In Britain, some 46 species belong to this family, although only 26 of these are recognisable as ladybirds, all of which are featured in the guide. The guide features clear colour illustrations grouped by appearance to help with identification, with information on colour pattern, habitat and distribution and hints to aid identification provided in a comprehensive table.

 

 

Guide to ladybird larvae of the British Isles cover. Shows illustrations of nine ladybird larvae

Guide to the Ladybird Larvae of the British Isles                                                                      Unbound | August 2012

Ladybird Larvae are often found, but not well known, as they look so different from adult ladybirds. This 8-panel fold-out chart with illustrations of the larvae of the 26 ladybird species featured on the earlier Guide to Ladybirds of the British Isles and a selection of photographs of pupae.

 

 

RSPB ID Spotlight: Ladybirds                                                                                          Unbound | May 2023

This reliable fold-out chart presents illustrations of 27 of our most widespread and familiar ladybirds by renowned artist Richard Lewington. This ID chart is grouped by family with artworks shown side by side for quick comparison and easy reference. The reverse of the chart details the habitats, behaviour, life cycles and diets of ladybirds, as well as the conservation issues they are facing and how we can support them.

 

Insect Survey Equipment

Standard Sweep Net

This simple and well-designed sweep net is ideal for students and those new to entomology. It is made from durable fabric and is designed for sweeping through grass or other foliage to catch ladybirds and other bugs. The sweep net is easy to use, the frame is lightweight aluminium, and the soft calico bag attaches to this using strong velcro.

Opticron Hand Lens 23mm 10x Magnification

The Opticron Hand Lens contains a high quality 23 mm doublet lens and provides excellent distortion-free magnification. The 10x magnification gives great detail when examining insects and would be perfect for general observations. To use a hand lens, hold it close to your eye then bring the specimen up to the lens until the point where it is in focus.

 

The NHBS Guide to UK Spider Identification

There are over 650 species of spider within the UK, and although many may find spiders unappealing or even frightening, they are fascinating in their own right. While many spiders are present throughout the year, autumn is the best time to see them outdoors. 

Identifying spiders can often be difficult, as they are very small, elusive, and many species resemble one another. The colouration and pattern of a spider can be a useful way to identify them, as well as other key features such as the structure of their webs. In some cases, it is necessary to take a closer look at the genitalia under a microscope, as this can be the only way to confidently identify certain species. You can also use your location as a clue, as some species are more likely to be found in certain parts of the UK.

To survey for spiders, you can search by eye or you can use equipment such as a sweep net or a sampling tray, and a hand lens can help you pick out features on smaller species. There are also lots of field guides and books available for more information on different types of spiders.

In this article, we’ll show you several fairly common species that you may find in your garden or local green space. 

Garden Spider or Cross Orbweaver (Araneus diadematus)

Distribution: Common and widespread

What to look for: These spiders are greyish-brown or reddish-brown with a white pattern across their back that resembles a cross. They can also sometimes be bright orange. They have striped legs, and females are twice the size of males. 

Garden spider (left and right) by xulescu_g via Flickr
Noble False Widow (Steatoda nobilis)

Distribution: Widespread across southern England, with their range increasing northwards

What to look for: This species can be confused with many other UK species. Their body is dark brown, with variable patterns on their abdomen. Usually cream and dark brown marks that can sometimes resemble a skull.

Did you know? This is a non-native species in the UK and was thought to be introduced in the late 1800s. Despite many rumours, bites from this species are rare, usually occurring when the spider is disturbed. The bites have been compared to a wasp sting, however guidance should be sort if you are concerned about a bite.

Noble false widow by Martin Cooper via Flickr
Common Candy-Striped Spider (Enoplognatha ovata)

Distribution: Occurs throughout the UK

What to look for: The common candy-striped spider has several colour variations. Their abdomen usually has a pale creamish-white background. The pattern on it can be bright pinkish-purple in a V shape pointing towards the head, a solid pinkish-purple triangle, black lines that can be either thick or thin, or a variation of black marks and spots. Their cephalothorax (fused head and thorax) is a pale yellow colour, with a dark line down the middle, and their legs are also a similar pale yellow. In the field, it is incredibly difficult to distinguish this species from a similar species, the scarce candy-striped spider (Enoplognatha latimana). Confirmation of the species usually requires examination under a microscope. 

Common candy-striped spider by Judy Gallagher via Flickr
Goldenrod (Flower) Crab Spider (Misumena vatia)

Distribution: Common in southern UK

What to look for: The goldenrod crab spider has some colour variation, appearing white, yellow or green, They often have red lines on either side of their abdomen. Their abdomen is bulbous and their front legs have a crab-like appearance, hence their name. The female is much larger than the male. 

Did you know? This species can change its body colour to match its background! It takes a few days to occur, but it helps to disguise the spider as they sit and wait for their prey to land near them.  

Goldenrod crab spider by hedera.baltica via Flickr
Zebra Jumping Spider (Salticus scenicus)

Distribution: Widespread

What to look for: The zebra jumping spider can grow up to 8mm, which is surprisingly large for a jumping spider, and they can jump an impressive 10cm. As their name suggests, they have a black and white striped pattern, but it can be hard to tell them apart from similar species of jumping spider. They are usually found on walls, rocks, or tree trunks.

Zebra jumping spider by Chris via Flickr
Cucumber Green Spider (Araniella cucurbitina)

Distribution: Occur throughout the UK

What to look for: Around 4-6mm long, this small spider has a bright yellowish-green abdomen and a pinkish cephalothorax. They also have small black spots along their abdomen. They are very similar to another cucumber spider A. opisthographa, but it can be difficult to tell them apart in the field.

Cucumber green spider by Pavel Kirillov via Flickr
Labyrinth Spider (Agelena labyrinthica)

Distribution: Widespread in southern England, as well as in Wales

What to look for: The labyrinth spider can grow quite large, up to 18mm long. They create long, funnel-shaped webs in long grass and hedgerows. Their abdomen has a pale brown stripe with darker bands on either side, and these bands have several paler chevron markings through them. Their cephalothorax also has a pale brown stripe, with an orange-brown band on either side, and their legs are orange-brown with paler hairs.

Labyrinth spider by gailhampshire via Flickr
Nursery Web Spider (Pisaura mirabilis)

Distribution: Widespread across most of the UK, although less frequent in the north

What to look for: The nursery web spider is quite variable in colour, and can have a grey, dark brown, or yellow-orange body. They have a slender, pointed abdomen, with two dark brown lines running from the spinnerets (silk-spinning organs) all the way to the front of the cephalothorax. They also have pale tear-shaped marks next to their eyes.

Nursery web spider by Dluogs via Flickr

Useful books and equipment

Britain’s Spiders: A Field Guide

Now in a comprehensively revised and updated new edition, Britain’s Spiders is a guide to all 38 British families, focussing on spiders that can be identified in the field. Illustrated with photographs, it is designed to be accessible to a wide audience, including those new to spider identification.

 

 

Pocket Guide to British Spiders

Featuring 130 of the most common and readily identifiable species, this illustrated pocket book is the ideal comparison for anyone interested in the naturally occurring spiders found in the British Isles.

 

 

Collins Field Guide to the Spiders of Britain and Northern Europe

This major identification guide to 450 species of spider is designed for easy use. Each species is described in detail and illustrated in colour, including common colour variants and differences between the sexes.

 

 

 

A Guide to House and Garden Spiders

Of the 33 spider families represented in Britain, 21 are featured in this chart. The guide includes colour illustrations and a table with identification features, habitat and methods of prey capture for the 40 spiders featured in the chart.

 

 

 

Harvestman of the British Isles

A fully up to date second edition, covering all 34 species that have been recorded in the wild in Britain and Ireland. There are photographs of each species, with separate photos for males and females, and a comprehensive identification table.

 

 

Bug Box Magnifying Pot

A clear plastic pot with a snap on magnifying lid with x3.5 magnification, ideal for viewing pond life and terrestrial invertebrates up close.

 

 

Insect PooterInsect Pooter

The pooter is a classic piece of entomological equipment, enabling the capture of small or delicate invertebrates without the risk of damaging them or losing them in the undergrowth. It consists of a transparent plastic collecting jar with a lid containing two holes, one of which has a fine mesh covering.

 

 

Bug Tongs

These scissor action Bug Tongs are the perfect way for children to collect larger insects and bugs which cannot easily be caught using a pooter.

 

 

 

Opticron Hand Lens 23mm 10x Magnification

This Opticron Hand Lens contains a high quality 23mm doublet lens, made of glass and provides excellent distortion-free magnification. The 10x magnification is recommended for general observations and this magnifier is the one most commonly recommended for all types of fieldwork.

Book Review: Silent Earth by Dave Goulson

On the 27th of September, 1962, marine biologist and conservationist Rachel Carson saw her book, Silent Spring, published. A powerful examination of the effect that humans have on the natural world, with a particular emphasis on the use of pesticides, Silent Spring met with rapid success and soon became a landmark text on the subject. Despite fearsome opposition it became a rallying point for the environmental movement, fuelling discussions that would result in the widespread re-evaluation of the damage that pesticides can cause and the banning of some of the most damaging chemicals, such as DDT. 

Dave Goulson’s new book, Silent Earth: Averting the Insect Apocalypse, is at once a tribute to Carson’s masterpiece and an innovative new work in its own right. Building upon Carson’s inspirational text, Silent Earth provides an up-to-date analysis of our impact upon the natural world over the last sixty years and beyond. The message is simple: despite the advances we’ve made, the warnings of Silent Spring have gone terrifyingly unheeded and without action we might soon find ourselves in a situation that we cannot reverse.

Goulson is a biology lecturer and leading expert in insect ecology, particularly bumblebees, as well as a highly respected scientific writer with several books and hundreds of published papers in his portfolio – it comes as no surprise that Silent Earth is both supremely well researched and beautifully written. It is written in five parts. The first, “Why Insects Matter”, is a fascinating delve into the significance of insects both to the natural world and to human society. With an expert eye, Goulson skillfully guides the reader through different aspects of their importance, from the multi-million pound service that dung beetles provide the farming industry each year in the UK alone to the vital role that pollinators play in underpinning ecosystems across the planet, and the value that insects have in their own right as beautiful, vibrant denizens of our planet. The author’s passion is infectious; it is difficult to read this section without becoming invested in the wondrous ranks of the planet’s invertebrates, making the threat of their decline feel all the more personal. 

In the next two parts, “Insect Declines” and “Causes of Insect Declines”, Goulson introduces the sources of evidence that can be drawn on to track insect declines and explores some of the reasons why society seems oblivious to our dwindling invertebrate fauna. He then moves on to explore in detail the various pressures upon their populations, examining and evidencing each before moving on to the next. Goulson writes with respect for the reader, never over-simplifying his prose while providing ample detail to engage any reader, be they a newcomer to the field, amateur enthusiast, ecology professional or academic. Particularly notable is the way in which Goulson details his own work, which has at times proved controversial among some parties. He consistently highlights the arguments of his critics, treating them with respect and validation. At some points he provides his rebuttal while at others he admits to the shortcomings of the relevant research, explaining why a different approach was impossible at the time. This is indicative of an attitude that permeates the book – the issues that he writes about are bigger than minor gripes with experimental methodologies, bigger than business margins or political leanings. He presents with a neutral eye the irrefutable reality that insects are vanishing at a terrifying rate, and unless action is taken the world is heading towards a very real disaster within generations. Though frequently distressing and at times heartbreaking, Goulson writes with a voice compelling and just witty enough to prevent the reader from becoming despondent. This book is not intended to drive us to despair, but to action. 

Part Four –  “Where Are We Headed?” – is a brief but poignant exploration of the author’s vision of the future. From another writer, this might seem like a flight of fancy, but from Goulson it comes across as a warning every bit as earnest and necessary as the hard science of the preceding chapters. It acts as a kind of crescendo, a snapshot of the future that the author is trying to warn us about, as well as a perfect segway into the final part. Perhaps most importantly after the relentlessly grim picture painted in “Causes of Insect Declines”, it ends with a ray of hope. 

The fifth and final part of the book is simply titled “What Can We Do?”. It lists from the point of view of the author – a researcher, educator, and father – the actions that should be undertaken by everyone in society, from members of the public to researchers, farmers and politicians, among others, to begin to turn the tide. Various key actions are explored in detail – the importance of instilling an environmental ethos in young people, of encouraging native plants in our towns and cities and overhauling the way in which we view farming. Finally, there is an extensive list of actions, large and small, that people can take, listed by occupation. This section is what the book has been building to, and it is worth reading for this alone. As usual, respect is paid to all viewpoints and all members of society. It doesn’t matter whether the reader is in a position where a free-range organic, locally sourced diet is financially viable or not – there will be other actions that they can take regardless of financial matters. Nor does it matter if they have beliefs, political or economic, that might conflict with the author’s. It is a call for society to overlook such matters which are, in the face of such a crisis, trivial. 

Silent Earth: Averting the Insect Apocalypse is, in my opinion, a masterpiece of popular science writing. It is a feat to present such dire information in a way that is not only readable, but also engaging and compelling – Goulson’s prose manages never to lose the reader for a moment. It is a stark, hard-hitting warning, but one that must be heard by as many people as will listen. Moreover, it goes far beyond the reactionary doomsayings sometimes written on the subject to provide an inspiring manifesto for change. It equips the reader with the knowledge that they need to understand the problem, and the actions they can take to enact this change. It leaves you with the impression that, if the message can get through to enough readers across the world, we might just be able to turn the tide and preserve the buzzing of bees, the chirping of crickets and the droning of cicadas to prevent the silence falling for good.  

 

Silent Earth: Averting the Insect Apocalypse
By: Dave Goulson

 

 

Climate Challenges: 1. Insect Decline

In the lead up to the 26th UN Climate Change Conference of the Parties (COP26) in November of this year, we are writing a series of articles looking at some of the toughest global climate crisis challenges that we are currently facing. This post looks at the evidence for and challenges posed by a global decline in insects.

Bumblebee by Charles Haynes, via Flickr
What is the evidence for a global insect armageddon?

One of the first meta-analyses of insect population decline was published in 2014 by Dirzo et al. in Science under the title ‘Defaunation in the Anthropocene’. This seminal paper reported that 67% of monitored invertebrate populations showed 45% mean abundance decline and warned that ‘such animal declines will cascade onto ecosystem functioning and human well-being’. Three years later, Hallmann et al. (2017) published the results from 27 years of malaise trap monitoring in 63 natural protection areas in Germany, and concluded that insect biomass had declined by more than 75% during this time. This paper in particular was widely reported in the media, creating widespread concern among the public of an impending insect armageddon, or ‘insectageddon’.

Since then, several other reports have continued to draw attention to declines in insect abundance, biomass and diversity around the world (for excellent reviews see Wagner (2020) and Sánchez-Bayo & Wyckhuys (2019)). However, many of these studies have been restricted to well-populated areas of the US and Europe and there is little information available to assess how these patterns compare with other less well studied regions.

Despite the abundance of data suggesting a pattern of global insect decline, many studies show conflicting results, with datasets from a similar area often reporting different patterns. There is also evidence that some insects are faring well, particularly in temperate areas which are now experiencing milder winters. Species that benefit from an association with humans, such as the European honeybee, may also be experiencing an advantage, along with certain freshwater insects that have benefited from efforts to reduce pollution in inland water bodies.

What are the challenges in assessing and predicting insect population trends?

In comparison to vertebrate groups, comprehensive long-term datasets are rare for invertebrates. This is primarily down to the fact that invertebrates are incredibly species rich and so, even for those that have been formally identified and described, a considerable amount of skill and knowledge is required for reliable identification. In addition to this high level of expertise is the need for large amounts of field equipment, which means that long-term, comprehensive studies can be expensive and difficult to fund.

Both historical and current invertebrate monitoring data tends to come from a small number of wealthy and well-populated countries (usually the US and western Europe), and there are comparatively few datasets available from tropical and less developed areas. Unfortunately, these understudied countries and regions tend to be the areas where we might expect to find the most diverse and species rich populations of invertebrates.

Other challenges relate to the way that data is collected. Using total insect biomass as a measure provides a useful large-scale perspective and provides information relevant to ecosystem function. It also minimises the problems involved with taxonomy and identification. However, using this measure means that species-level trends are completely overlooked.

Illustration: Virginia R. Wagner
What are the main stressors affecting insect populations globally?

Studies suggest that the main stressors impacting invertebrates are changes in land-use (particularly deforestation), climate change, agriculture, introduced and invasive species, and increased nitrification and pollution. However, it is rare that a single factor is found to be responsible for monitored declines and the situation has been described as being akin to ‘death by a thousand cuts’.

In a recent special edition of PNAS, that looked in depth at the available research and literature on insect decline in the Anthropocene, climate change, habitat loss/degradation and agriculture emerged as the three most important stressors.

Where do we go from here?

Traditionally, conservation has focused on rare and endangered species. However, with mass extinctions and large scale invertebrate loss, which include declines in formerly abundant species, a different approach is required. Invertebrates form an important link between primary producers and the rest of the food chain, and play a key role in most ecosystems. They provide numerous ecosystem services such as pollination, weed and pest control, decomposition, soil formation and water purification, and so their fate is of both environmental and economic importance.

There are several things to be positive about within the realms of invertebrate conservation: over the past decade, funding to support insect conservation has been growing and, in many countries, there are now substantial grants allocated to monitoring and mitigation projects. The EU and US have seen widescale banning of certain pesticides following research demonstrating their impacts on both economically important pollinators and other fauna. Finally, citizen science projects to study invertebrate populations are becoming both numerous and successful, greatly increasing the amount of comprehensive, long-term data that is available to inform conservation decisions.

Despite this, much more long-term data on invertebrate populations is required, particularly from regions outside of Europe and the US, such as tropical areas of the Americas, Africa and Asia. Attention to factors such as the standardisation of survey techniques and improved data storage and accessibility are also important, as well as the utilisation of new methods including automated sampling/counting equipment and molecular techniques. Using the information available, evidence-based plans for mitigating and reversing declines are desperately required.

All of this takes time however, and we need to act now. Even without comprehensive species-level data, we know that a biodiversity crisis is occurring at a rate serious enough for it to have been termed the ‘6th Mass Extinction’. Individual, group, nationwide and global action will all be required to combat this. Widescale change in societal attitudes to insects will undoubtedly need to play a role in this process, alongside global efforts to slow climate change and develop insect-friendly methods of agriculture.

Large-scale intensive agriculture which relies heavily on the application of pesticides and fertilisers is a huge concern for insect populations. Image by Rab Lawrence via Flickr.
Summary

• Numerous studies have reported large-scale declines in insect populations, with several estimating a loss of approximately 1–2% of species each year.
• The availability of high-quality and long-term datasets is a limiting factor in assessing population trends. Furthermore, available data tends to be from well-populated and historically wealthy areas such as the US and western Europe, with the diverse and species-rich tropics severely under-researched.
• The main stressors thought to be impacting insect populations globally are climate change, habitat loss/degradation and agriculture. In most, if not all of these cases, a combination of these and other factors are likely to play a role.
• Although there are some aspects of insect conservation to be positive about, much work still needs to be done. Further monitoring and recording are required, particularly in poorly studies areas, in order to inform conservation decisions. Simultaneously, local and global efforts must be made to slow climate change, halt the destruction of ecologically important habitats and develop nature-compatible methods of agriculture.

References and further reading

• Jarvis, B. (2018) The Insect Apocalypse is Here. The New York Times
• Dirzo, R. et al. (2014) Defaunation in the Anthropocene. Science 345: 401–406
• Hallmann, C. A. et al. (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12: e0185809
• Wagner, D. L. (2020) Insect declines in the Anthropocene. Annu. Rev. Entomol. 65: 457–480
• Sánchez-Bayo, F. & Wyckhuys, K. A. G. (2019) Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232: 8–27
• Wagner, D. L. et al. (2021) Insect decline in the Anthropocene: Death by a thousand cuts. Proceedings of the National Academy of Sciences. 118(2): e2023989118

Silent Earth: Averting the Insect Apocalypse

Eye-opening, inspiring and riveting, Silent Earth is part love letter to the insect world, part elegy, part rousing manifesto for a greener planet. It is a call to arms for profound change at every level – in government policy, agriculture, industry and in our own homes and gardens, to prevent insect decline. Read our extended review.

 

The Insect Crisis: The Fall of the Tiny Empires that Run the World

In a compelling global investigation, Milman speaks to those studying this catastrophe and asks why these extraordinary creatures are disappearing. Part warning, part celebration of the incredible variety of insects, The Insect Crisis highlights why we need to wake up to this impending environmental disaster.

Climate Change and British Wildlife

In this latest volume in the British Wildlife Collection, Trevor Beebee examines the story so far for our species and their ecosystems, and considers how they may respond in the future. Check out our interview with Beebee, where we discuss the background of this book, his thoughts on conservation and his hopes for the future.

 

Rebugging the Planet: The Remarkable Things  that Insects (and Other Invertebrates) Do – Any Why We Need to Love Them More

Environmental campaigner Vicki Hird demonstrates how insects and other invertebrates, such as worms and spiders, are the cornerstone of our ecosystems and argues passionately that we must turn the tide on this dramatic bug decline.

 

The Last Butterflies: A Scientist’s Quest to Save a Rare and Vanishing Creature

Weaving a vivid and personal narrative, Haddad illustrates the race against time to reverse the decline of six butterfly species. A moving account of extinction, recovery, and hope, The Last Butterflies demonstrates the great value of these beautiful insects to science, conservation, and people.

 

Why Every Fly Counts: Values and Endangerment of Insects

Hans-Dietrich Reckhaus discusses the beneficial and harmful effects of insects and explains their development and significance for biodiversity. This second, fully reviewed and enlarged edition provides new insights into the value of species seen as pests, insect development and their decline in different regions in the world.

Author interview with Beat Wermelinger: Forest Insects in Europe

Forest Insects in Europe has been written not only with professional entomologists in mind, but also for nature lovers generally. The descriptions of the various roles insects play in forest ecosystems are intended to be easily comprehensible, but still scientific.

We recently caught up with the book’s author, Beat Wermelinger, who works as a Senior Scientist at the Swiss Federal Research Institute WSL. His research interests include bark beetles and natural enemies, Biodiversity, windthrow succession, climate change and neozoa. Beat answered our questions in German and our bi-lingual team members were excited to translate these to English for us. Discover more below in both languages.

1) Could you tell us a little bit about your background and how you came to write Forest Insects in Europe: Diversity, Functions and Importance?

I have been working at the Swiss Federal Research Institute WSL (Swiss Federal Institute WSL) (a forest research institute) for 30 years and until recently was the head of the entomology group. Simultaneously, I have also been teaching forest insects at the ETH Zurich. During this time, a large pool of knowledge and information has accumulated. I have also been a passionate insect photographer for just as long, which is reflected in an image database of around 16.000 insect photos. These two strands provided an ideal basis for conveying the importance and fascination of insects in one scientifically based book, which was also richly illustrated with photos, for both specialists and all those interested in nature.

Können Sie uns etwas über Ihren Hintergrund erzählen und wie Sie dazu kamen, Forest Insects in Europe: Diversity, Functions and Importance zu schreiben?

Seit 30 Jahren arbeite ich an der Eidgenössischen Forschungsanstalt WSL (Swiss Federal Institute WSL) (einem Waldforschungsinstitut) und leitete dort bis vor kurzem die Gruppe Entomologie. Zugleich unterrichte ich fast gleich lang zu Waldinsekten an der Hochschule ETH in Zürich. In dieser Zeit hat sich ein grosser Fundus an Kenntnissen und Informationen angesammelt. Ausserdem bin ich seit mindestens ebenso langer Zeit ein passionierter Insektenfotograf, was sich in einer Bilddatenbank von rund 16.000 Insektenbildern niedergeschlagen hat. Diese beiden Grundlagen boten eine ideale Basis, die Bedeutung und Faszination von Insekten in einem zwar wissenschaftlich fundierten, aber auch reich mit Fotos illustrierten Buch sowohl Fachpersonen als auch allen Naturinteressierten zu vermitteln.

2) The book tackles a vast array of insect groups and ecological functions – were there any particular challenges in collating so much information in one place?

Much of the information comes from my readings or lectures. However, since I wanted to portray the ecological and economic importance of forest insects as broadly as possible, I still had to review a lot of published material. Above all, I wanted to support quantitative data with accurate citations. Owing to the Internet, such research is easier today than it was 20 years ago… Fortunately, I also had my own photographs on almost all topics.

Das Buch befasst sich mit einer Vielzahl von Insektengruppen und Funktionen – gab es besondere Herausforderungen, so viele Informationen in einem Buch zusammenzufassen?

Ein wesentlicher Teil der Informationen stammt aus meinen Vorlesungen oder Vorträgen. Da ich aber die ökologische und ökonomische Bedeutung von Waldinsekten möglichst breit darstellen wollte, musste ich doch noch Einiges an Literaturarbeit leisten. Vor allem wollte ich quantitative Angaben mit korrekten Literaturzitaten abstützen. Dank dem Internet sind solche Recherchen heute einfacher als noch vor 20 Jahren… Erfreulicherweise hatte ich auch zu fast allen Themen eigene Bilder.

3) Are there any insect groups that hold a particular interest for you?

Professionally, I am mainly concerned with wood-dwelling insects. I am especially interested in the bark beetles, and their natural enemies as well as the intensive interactions with their host trees. Bark beetles are known to be pests, but they are also pioneers in the decay of wood. I also deal with the wood-dwelling longhorn beetles and jewel beetles, which often lend themselves to photography because of their size and beauty. For decades I have dealt with the development of their biodiversity after disruptive events such as storms or fire. The social red wood ants or the galling insects also fascinate me with their ingenious way of life.

Haben Sie eine Insektengruppe, an der Sie besonders interessiert sind?

Beruflich beschäftige ich mich vor allem mit holzbewohnenden Insekten. Mich interessieren die Borkenkäfer, ihre natürlichen Feinde und die intensiven Wechselwirkungen mit ihren Wirtsbäumen. Borkenkäfer sind zwar als Schädlinge bekannt, sie sind aber auch Pioniere beim Holzabbau. Weiter befasse ich mich mit den holzbewohnenden Bock- und Prachtkäfern (longhorn beetles, jewel beetles), die sich oft ihrer Grösse und Schönheit wegen auch zum Fotografieren anbieten. Über Jahrzehnte habe ich mich mit der Entwicklung ihrer Artenvielfalt nach Störungsereignissen wie Sturm oder Feuer beschäftigt. Auch die staatenbildenden Waldameisen (red wood ants) oder die gallbildenden Insekten (galling insects) faszinieren mich durch ihre ausgeklügelte Lebensweise.

4) In Chapter 18, you discuss the severe and widespread decline of several insect groups. What has caused so many species to dwindle in European forests? And what is being done to address these threats?

There are two main causes for the decline in much of the forest insect fauna. The intensive use of wood in the past centuries has led to the fact that the forest area in Europe has decreased significantly over a long period of time, the trees no longer reach their natural age phase, and there were almost no dead trees that could slowly rot. In the case of many wood-dwelling insects that are dependent on so-called habitat trees or develop in decayed, thick tree trunks, this has led to a severe threat to their biodiversity. In recent decades, the forest area has increased again and in many countries the preservation of old trees and dead wood is being promoted. However, the impact is still modest.

A second reason is the fact that many shrubs and pioneer tree species such as willow and poplar have disappeared and the forests have often become more monotonous and closed. This mainly affects the forest butterflies. Today, clearings are created on purpose from which not only these insects, but also other light-loving forest species such as certain orchids or birds can benefit.

In Kapitel 18, erwähnen Sie den verbreiteten Rückgang mehrerer Insektengruppen. Was hat den Rückgang so vieler Arten in den europäischen Wäldern verursacht? Und was wird getan, um diese Bedrohungen zu begegnen?

Es gibt hauptsächlich zwei Gründe für den Rückgang eines grossen Teils der Waldinsektenfauna. Die intensive Holznutzung der vergangenen Jahrhunderte hat dazu geführt, dass die Waldfläche in Europa über lange Zeit sehr stark abgenommen hat, die Bäume nicht mehr ihre natürliche Altersphase erreichten, und fast keine abgestorbenen Bäume vorhanden waren, die langsam verrotten konnten. Dies hat bei vielen holzbewohnenden Insekten, die auf sogenannte Habitatbäume angewiesen sind oder sich in toten, dicken Baumstämmen entwickeln, zu einer starken Bedrohung ihrer Artenvielfalt geführt. In den letzten Jahrzehnten hat die Waldfläche zwar wieder zugenommen und in vielen Ländern wird der Erhalt von alten Bäumen und Totholz gefördert. Die Auswirkungen sind jedoch noch bescheiden.

Ein zweiter Grund ist die Tatsache, dass durch die Bewirtschaftung viele Sträucher und Pionierbaumarten wie Weiden oder Pappeln verschwanden und die Wälder oft monotoner und dunkler geworden sind. Dies wirkt sich vor allem auf die Wald-Tagfalter (forest butterflies) aus. Heute werden gezielte Auflichtungen durchgeführt, von denen nicht nur diese Insekten, sondern auch andere lichtliebende Waldarten wie bestimmte Orchideen oder Vögel profitieren.

5) A particular highlight of the book is the wonderful collection of insect photographs, most taken by you. Do you have any advice for people interested in insect photography?

The main problem when photographing small objects is always to be able to focus as much as possible on them. This requires a small aperture and therefore a lot of light. I photograph everything “hand-held” and therefore the shutter speed should be short. For these reasons, I almost always use a ring flash with separately controllable halves and 100 mm macro lens with my SLR camera. Nonetheless, even cameras with a small sensor (even mobile phones!) can nowadays produce surprisingly good images of larger, less volatile insects.

In order to photograph an insect as sharply as possible, you should position yourself so that the insect is parallel to the camera. At least the eyes should always be sharp. Of course, you can also choose a different level of focus for special effects.

In addition to technology, you need an eye for the little things in nature, patience and always a bit of luck! Knowledge of the behavior of certain groups of insects can also come to great advantage.

Ein besonderes Highlight des Buches ist die wunderbare Sammlung von Insektenfotos, die meisten davon von Ihnen aufgenommen. Haben Sie Tipps für Leute, die sich für Insektenfotografie interessieren?

Das Hauptproblem beim Fotografieren von kleinen Objekten ist immer, einen möglichst grossen Teil davon scharf abbilden zu können. Dies erfordert eine kleine Blende und damit auch viel Licht. Ich fotografiere alles “aus der Hand” und deshalb sollte die Verschlusszeit kurz sein. Aus diesen Gründen verwende ich mit meiner Spiegelreflexkamera und dem 100 mm Makroobjektiv fast immer einen Ringblitz mit separat steuerbaren Blitzhälften. Aber auch Kameras mit kleinem Sensor (sogar Handys!) bringen bei grösseren, wenig flüchtigen Insekten heutzutage erstaunlich gute Bilder. Um ein Insekt möglichst scharf abzulichten, sollte man sich so positionieren, dass das Insekt möglichst parallel zur Kamera steht. Mindestens die Augen sollten immer scharf sein. Natürlich kann man die Schärfenebene für spezielle Effekte auch anders wählen.

Zusätzlich zur Technik braucht es aber vor allem das Auge für die kleinen Dinge der Natur, Geduld und immer auch etwas Glück! Auch Kenntnisse des Verhaltens bestimmter Insektengruppen sind von grossem Vorteil.

6) What’s next for you? Do you have any projects that you are currently involved in that you would like to tell us about?

Professionally I am still working for another year, but of course my interest in insects will not vanish when I retire. I would like to use my pictures in other ways and maybe do another book. Above all, not surprisingly I would like to use the time to photograph insects in the great outdoors.

Was kommt als Nächstes für Sie? Haben Sie Projekte, an denen Sie aktuell beteiligt sind und die Sie mit uns teilen können?

Beruflich bin ich noch ein Jahr tätig, aber damit erlischt mein Interesse an Insekten natürlich nicht. Ich würde gerne meine Bilder noch anderweitig in Wert setzen und vielleicht noch ein weiteres Buch in dieser Art machen. Vor allem aber möchte ich die Zeit nutzen, um – wen wundert’s – in der freien Natur Insekten zu fotografieren.

Forest Insects in Europe Diversity, Functions and Importance
By: Beat Wermelinger
Paperback | July 2021| £42.99 £49.99

 

All prices correct at the time of this article’s publication.