The Importance of Nest Sites for Birds and Bees

Changes in land use can result in strong competition between species that have historically survived alongside eachother, such as goldfinches and chaffinches. Goldfinch by Tony Smith is licenced under CC BY 2.0.

Over the last century, land use in the UK has changed drastically. Small mixed-crop farms, traditionally separated by lanes, hedgerows and wild meadows have been replaced with larger, more specialised facilities. At the same time, the density of grazing animals such as sheep and cattle has also risen substantially. This combination of land-use change and agricultural intensification has contributed significantly to habitat degradation and biodiversity loss, and has led to huge, often dire, changes for the wildlife that call these places home.

Understanding these processes is of huge importance to conservationists, and a considerable amount of research has been conducted into the broad scale effects of land use changes on biodiversity. It is less well understood, however, why seemingly similar species can be affected to a different extent by local changes in their habitat.

A recent study, conducted by Dr Andrew Higginson at the University of Exeter, suggests that competition for nesting space may be a key factor in the differences observed. His study used a mathematical model to predict the likely outcome when populations of birds and bees are faced with a reduction in suitable nesting sites. Results indicated that larger, earlier-nesting species tend to fare better in these conditions, but at the expense of smaller, later-nesting conspecifics who, in the real world, would either fail to find a nesting site or be forced into using a poor quality or risky location.

When nest spaces become limited, species that have co-existed for generations may suddenly find themselves in direct competition. Birds Nest 3 by Scott McLeod is licenced under CC BY 2.0.

Dr Higginson’s results illustrate that, whilst two or more similar species can co-exist together very happily when there are sufficient nesting spaces available, as soon as these become limited, competition and conflict become inevitable. In severe situations, species that have historically thrived in the same environment may suddenly find themselves battling for survival.

A key message from the study was that conservation efforts should ensure that priority is given to the creation and maintenance of suitable nesting sites. Conservation practices often focus on provision of food for wildlife, such as planting wildflowers for bees and providing food for our garden birds. Preserving and creating safe and accessible places for these animals to nest, however, is just as critical if we are to ensure their continued survival.

Head over to www.nhbs.com for our full range of bird nest boxes and insect nesting aids, or download our full nest box price list.

 

Surviving the Misinformation Age

This post is the final of a four-part series on polarised discussions in science and how to deal with misinformation. You can find Part 1 introducing the topic here, Part 2 on climate change here,  and Part 3 on evolutionary biology here.


In the preceding two sections we have given a very brief survey of two areas that are the subject of intense public debate, and that see a lot of distortion or denial of factual knowledge to fit preconceived ideas. But the problem is not limited to these areas and we currently find ourselves amidst a storm of misinformation, fake news and alternative facts. In this final section, we draw attention to a number of recent books that will help readers think more clearly, logically and rationally, and give them the tools to see through spin and hyperbole.

Several prominent sceptics have written accessible books on a wide range of pseudoscientific ideas, such as Skeptic: Viewing the World with a Rational Eye (Shermer, 2016), Nonsense on Stilts: How to Tell Science from Bunk (Pigliucci, 2010), or Bad Science (Goldacre, 2008). In recent years, however, there seems to have been an increasing abandonment of reason.

Creating Scientific ControversiesPart of the problem is that, as alluded to in the post on anthropogenic climate change, a lot of scientific research is funded by groups with particular interests, which can lead to flawed results when they already have in mind what they want the science to show. This is discussed at length in Tainted: How Philosophy of Science Can Expose Bad Science (Shrader-Frechette, 2016). Even worse is when such groups purposefully create the appearance of controversy to confuse and mislead the public and protect industry interests, such as the decade-long campaign by the tobacco industry to create the impression there was no scientific consensus on the Not a Scientistharmful effects of smoking. David Harker has written the first book-length analysis of this in Creating Scientific Controversies: Uncertainty and Bias in Science and Society (2015), which should help readers to understand and evaluate such cases, and how to respond to them. Politicians are no less guilty of this, as Dave Levitan asserts in Not a Scientist: How Politicians Mistake, Misrepresent, and Utterly Mangle Science (2017).

The Death of ExpertiseAccording to books such as The Death of Expertise: The Campaign Against Established Knowledge and Why it Matters (Nichols, 2017), and Respecting Truth: Willful Ignorance in the Internet Age (McIntyre, 2015), another part of the problem is the internet. In the opinion of these authors, easy access to information and egalitarian platforms in the form of weblogs where everyone can have their own say, are some of the factors that have bred a generation of opinionated, poorly informed people, who Respecting Truththink they know enough on a topic after a quick scour of Wikipedia. This is accompanied by an underbelly feeling that expertise is synonymous with elitism, leading to distrust of any form of authority. In his pithy book Are We All Scientific Experts Now? (2014) Harry Collins provocatively puts forth the notion that not everyone’s opinion counts equally. Or, as Robert Dorit wrote in 1997 in American Scientist when reviewing Darwin’s Black Box, ‘[…] opinions should not be mistaken for expertise’.

As Julian Baggini explains in The Edge of Reason: A Rational Skeptic in an Irrational World (2016) this is not about stifling dissenters, or stamping out opposition. Science thrives on scepticism and reasonable debate. But the key word here is reasonable. The current wave of anti-expertise sentiment is not just attacking scientific knowledge, it is attacking the very framework that generates these findings. As Michael Specter said in The Edge of Reasonhis 2010 Ted Talk The Danger of Science Denial, ‘you are entitled to your own opinion, but you are not entitled to your own facts’. And, as Prothero argues in Reality Check: How Science Deniers Threaten Our Future (2013), this matters to society at large. Whether we are talking about addressing climate change, or the return of nearly eradicated diseases because more and more people refuse to vaccinate their children, the ill-informed opinions of some can affect us all, especially once they enter voting booths.

Making Sense of ScienceWe believe that this means that we have a responsibility, as academics, as educators, as librarians, to speak out and communicate why what we do matters, to teach critical thinking. This makes recent books such as Critical Thinking: Tools for Evaluating Research (Nardi, 2017), Making Sense of Science: Separating Substance from Spin (Dean, 2017) and A Survival Guide to the Misinformation Age: Scientific Habits of Mind (Helfand, 2016)  so important. This will require us to become excellent communicators: the media likes to simplify things and deal in snappy sound bites, whereas scientists have to communicate complicated ideas that have great degrees of uncertainty. And, as many of the interviewees in Olson’s documentary Flock of Dodos agreed in its conclusion, with some notable exceptions, scientists at large are poor communicators.A Survival Guide to the Misinformation Age Am I Making Myself Clear?: A Scientist’s Guide to Talking to the Public (Dean, 2009) could well be considered an essential part of the academic toolkit. But, as Jo Fidgen concludes around the 38-minute mark in the BBC Radio 4 podcast we referred to in our opening paragraph, ‘cold facts are not enough, they are much more convincing when they are part of a story’. So add Houston, We Have a Narrative: Why Science Needs Story (Olson, 2015) to your toolkit.

To end on a sober note, we must not forget that science is a human endeavour, and as such prone to all the failures and follies of man. In our search for a deeper understanding of the world around us we stumble, we falter, and we fail (on a side-note, this is not all bad, but a necessary part of scientific progress, as Stuart Firestein lays out in Failure: Why Science is So Successful (2015)). Worrying, also, is the 2015 Science paper reporting that a lot of published research findings cannot be replicated (though see this follow-up critique, and a rebuttal of that critique). And although this paper specifically talked about psychology research, a commentary in New Scientist highlighted how other disciplines also suffer from this problem, something which is explored more in-depth in Stepping in the Same River Twice: Replication in Biological Research (Shavit & Ellison, 2017). But this is no reason to discard the scientific process. Science may have its failings, but science can fix it.

A New Home for Old Pallets

Preparing pallets for the walkway. Photo by David Price.

The accumulation of stacks of pallets is an unavoidable part of working in a fast paced and varied retail environment. So when we were contacted by Keith Grant from the Slapton Ringing Group to ask if they could take some off our hands, we were both delighted to agree and eager to learn about the site where they would be put to use.

The Slapton Ringing Group is based at the Slapton Ley National Nature Reserve. This beautiful site is located on the south coast of Devon and contains the largest lake in the south west, separated from the sea by just a narrow shingle bar. Its location, together with the unique habitat conditions, makes it an extremely important place for local and migrating bird populations.

A job well done. The completed walkway leading to the ride. Photo by David Price.

The Slapton Ringing Group have been surveying birds at Slapton Ley since the 1960s, and for the last six years the site has been designated as a BTO Constant Effort Survey (CES) Site.

A regular rotation of willow cutting is undertaken at the site, which maintains the vegetation and helps to avoid major changes in species composition. A carefully constructed pallet walkway allows access to the ringing rides for the volunteers that meet here regularly throughout the ringing season.

The pallets salvaged from NHBS were used to replace old ones which have an obviously limited lifespan due to the constantly wet conditions. It is a pleasure to know that some of our “waste” is being used to support such a fantastic and long-running project.

For more information about bird ringing in Devon, take a look at the Devon Birds website.

The Evolution–Intelligent Design Circus

This post is the third of a four-part series on polarised discussions in science and how to deal with misinformation. You can find Part 1 introducing the topic here, Part 2 on climate change here,  and Part 4 on dealing with misinformation here.


Ever since Darwin published On the Origin of Species (1859; 150th Anniversary Edition, Darwin & Endersby, 2009), his ideas have been much debated. There have been many scholars over the years who disagreed with some or all of his ideas, and the history of this is charted in books such as Defining Darwin: Essays on the History and Philosophy of Evolutionary Biology (Ruse, 2010), Darwin’s Dangerous Idea: Evolution and the Meanings of Life (Dennett, 1995), The Non-Darwinian Revolution: Reinterpreting a Historical Myth (Bowler, 1988), and The Eclipse of Darwinism: Anti-Darwinian Evolution Theories in the Decades Around 1900 (Bowler, 1983). These academic discussions and disagreements have Evolution: The First Four Billion Yearsbeen absolutely vital to further the development of evolutionary theory and push the discipline as a whole forwards. Books such as Evolution: The Modern Synthesis (Huxley, 2010), Evolution: The Extended Synthesis (Pigliucci & Müller, 2010), Evolution: The History of an Idea (Bowler, 2009), and Evolution: The First Four Billion Years (Ruse & Travis, 2009) give a tremendous overview of the historical development of the field over the last century.

From the outset, however, there has also been an intense clash between evolutionary theory and religion, especially in America, both in general (see for example The Book That Changed America: How Darwin’s Theory of Evolution Ignited a Nation (Fuller, 2017)), but especially with the fundamentalist Christian school of thought of Creationism. The Oxford dictionary defines this as ‘The belief that the universe and living organisms originate from specific acts of divine creation, as in the biblical account, rather than by natural processes such as evolution’. It was Darwin himself who, in an 1856 letter to Joseph Dalton Hooker, dubbed its proponents, who objected to the emerging science of evolution on religious grounds, Creationists.

A particularly notable and influential episode that had enormous consequences was the 1925 Scopes trial, in which American high school teacher John T. Scopes was accused of violating Tennessee’s Butler Act, which had made it unlawful to teach human evolution in state-funded schools (see The Scopes Monkey Trial (Moore & McComas, 2016), and The Scopes Trial: A Brief History with Documents, though for an alternative interpretation offering, in the words of the publisher ‘an apologetic for divine creation’, see Monkey Business: True Story of the Scopes Trial (Olasky & Perry, 2005)). He was found guilty, though not convicted, and the trial escalated the conflict between strict creationists and scientists regarding the extent to which evolution would be taught as a science subject in schools. Trying Biology: The Scopes Trial, Textbooks, and the Antievolution Movement in American Schools (Shapiro, 2013) provides a wider historical context to The Creationiststhe trial. The matter of teaching evolution remains contested to this day. After the US Supreme Court in 1987 forbade teaching creationism in public schools on the grounds it violated the separation of church and state, Creationists rebranded their ideas to Intelligent Design, or ID for short (see Creationism’s Trojan Horse: The Wedge of Intelligent Design (Forrest & Gross, 2007)). These efforts have been fronted by, yet again, a conservative think tank, here the Discovery Institute. There are several books charting the controversies since the Scopes trial, for example Intelligently Designed: How Creationists Built the Campaign Against Evolution (Caudill, 2013), American Genesis: The Evolution Controversies from Scopes to Creation Science (Moran, 2012), Darwinism and its Discontents (Ruse, 2006), and the exhaustive The Creationists: From Scientific Creationism to Intelligent Design (Number, 2006). Also noteworthy is Randy Olson’s even-handed 2006 documentary Flock of Dodos: The Evolution-Intelligent Design Circus.

As the US Supreme Court forbade the teaching of Creationism on the grounds of it being a religion, ID proponents argue theirs is an evidence-based scientific theory. In their view, certain complex features of the universe and living beings are irreducibly complex, and thus proof for the existence of a divine creator. These ideas are elaborated in books such as Undeniable: How Biology Confirms Our Intuition That Life Is Designed (Axe, 2016), Evolution: Still a Theory in Crisis (Denton, 2016), Darwin’s Doubt: The Explosive Origin of Animal Life and the Case for Intelligent Design (Meyer, 2013; Stephen Meyer is the head of the Discovery Institute), Signature in the Cell: DNA and the Evidence for Intelligent Design (Meyer, 2010), and Darwin’s Black Box: The Biochemical Challenge to Evolution (Behe, 1995; considered by many the foundational text for the ID movement).

Many biologists have widely criticised ID, and it is generally considered as a pseudoscience. See amongst others Inside the Human Genome: A Case for Non-Intelligent Design (Avise, 2010), Why Evolution is True (Coyne, 2009), The GThe Greatest Show on Earthreatest Show on Earth: The Evidence for Evolution (Dawkins, 2009), Why Evolution Works (and Creationism Fails) (Young & Strode, 2009), The Panda’s Black Box: Opening Up the Intelligent Design Controversy (Comfort, 2007), Scientists Confront Creationism: Intelligent Design and Beyond (Petto & Godfrey, 2007), Doubting Darwin?: Creationist Designs on Evolution (Sarkar, 2007), Intelligent Thought: Science Versus the Intelligent Design Movement (Brockman, 2006), Why Darwin Matters: The Case Against Intelligent Design (Shermer, 2006), The Counter-Creationism Handbook (Isaak, 2005), God, the Devil, and Darwin: A Critique of Intelligent Design Theory (Shank, 2004), or Why Intelligent Design Fails: A Scientific Critique of the New Creationism (Young & Edis, 2004). Even earth scientists have felt the need to speak out (For the Rock Record: Geologists on Intelligent Design (Schneiderman & Allmon, 2009)). Several books deal specifically with claims that fossil evidence of transitional forms is lacking (Evolution: What the Fossils Say and Why it Matters (Prothero, 2007; second edition, 2017)), or the idea that evolution Evolution: What the Fossils Say and Why it Mattersreveals a grander design (Darwin and Design: Does Evolution Have a Purpose? (Ruse, 2003), and The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design (Dawkins, 1976; 40th Anniversary Edition, 2016)). For contributions hypothesising how complexity might have emerged naturally, see for example The Arrival of the Fittest: Solving Evolution’s Greatest Puzzle (Wagner, 2014), or The Tinkerer’s Accomplice: How Design Emerges from Life Itself (Turner, 2007).

Many hard-line scientists, Richard Dawkins included, argue that there is no debate to be had in the first place. There is no point arguing facts with a believer. Engaging these beliefs, and, as the Discovery Institute would have it, ‘teaching the controversy’, merely provides legitimacy to a non-existent controversy (though see Teaching Evolution in a Creation Nation (Laats & Siegel, 2016) for a proposition on how to break the Science and Religiondeadlock between science and religion). This touches on the age-old question of what dialogue there can be between science and religion. Dawkins, known for his militant atheism, is outspoken on the matter in his polemical The God Delusion (2006; 10th Anniversary Edition, 2016), while other authors have branded this as a futile effort (see for example Science and Religion: An Impossible Dialogue (Gingras, 2017) and Faith Versus Fact: Why Science and Religion Are Incompatible (Coyne, 2015)).

Amidst this fierce debate between two extremes, it is easy to overlook there are more moderate ideas. Many religious people do not support a literal reading of holy texts, and supporters of theistic evolution hold that religion and evolution need not contradict each other. The argument that geneticist Francis Collins puts forth in The Language of God (2006) boils down to “evolution is real, but it is the hand of God”. And he is not alone, Monkey Trials and Gorilla Sermons: Evolution and Christianity from Monkey Trials and Gorilla SermonsDarwin to Intelligent Design (Bowler, 2007) traces the long history of how churches have sought to reconcile Christian beliefs and evolution, and see ‘reflections of the divine in scientific explanations for the origin of life’. Whether you agree with this or not (religious fundamentalists see it as a capitulation, while Dawkins in The Blind Watchmaker has called it a superfluous attempt to ‘smuggle God in by the back door’), this rapidly leaves the realm of scientific enquiry and becomes one of personal beliefs.

Click here for the final part, which looks at books on how to deal with misinformation (coming soon).

Anthropogenic Climate Change: Arguments for and against

This post is the second of a four-part series on polarised discussions in science and how to deal with misinformation. You can find Part 1 introducing the topic here, Part 3 on evolutionary biology here, and Part 4 on dealing with misinformation here.


There is a broad scientific consensus about the reality of climate change and its causes. Readers starting off on this topic have plenty to choose from to get them started, for example Climate Change: What Everyone Needs to Know (Romm, 2015), Climate Change: A Very Short Introduction (Maslin, 2014), or the rather whimsical Ladybird Expert book Climate Change (Juniper & Shuckburgh, 2017). Al Gore thrust the topic into the limelight with An Inconvenient Truth: The Planetary Emergency of Global Warming and What We Can Do about It (2006). For those who want the full picture, there is Climate Change 2014 (IPCC, 2015), the fifth series of reports by the Intergovernmental Panel on Climate Change (IPCC). The IPCC operates under the auspices of the United Nations, and was set up at the request of member The Discovery of Global Warminggovernments in 1988. Global Warming: Understanding the Forecast (Archer, 2011) is an excellent starting point to help readers understand the science behind the assessment reports. Another valuable contribution is The Discovery of Global Warming (2008), written by science historian Spencer R. Weart, one of the few books charting the historical development of climate science.

But the science is only one facet of climate change; this spills over into politics and policy. Despite decades of research by scientists and an expanding body of evidence, the world at large, both its leaders and everyday individuals, seem unable to make much headway in addressing the issue, and unable to agree what the best way forward is. A good starting point analysing this from many sides is The Oxford Handbook of Climate Change and Society (Dryzek et al. 2011). William Nordhaus is one of several economists to have written about policies implemented so far (and their ineffectiveness) in The Climate Casino: Risk, Uncertainty, and Economics for a Warming World (2013). Other books have been written offering explanations as to why we seem unable to act, tapping into psychological and sociological aspects, for example Living in Denial: Climate Change, Emotions, and Everyday Life (Norgaard, 2011), Requiem for a Species: Why We Resist the Truth About Climate Change (Hamilton, 2010), and Why We Disagree about Climate Change: Understanding Controversy, Inaction and Opportunity (Hulme, 2009). And plenty of authors have issued calls to action, ranging in tone from polemic (This Why We Disagree About Climate ChangeChanges Everything: Capitalism vs. the Climate (Klein, 2014)), to ominous (Storms of My Grandchildren: The Truth About the Coming Climate Catastrophe and Our Last Chance to Save Humanity (Hansen, 2009)) to seemingly fatalistic (Too Late: How We Lost the Battle with Climate Change (Maslen, 2017), Defiant Earth: The Fate of Humans in the Anthropocene (Hamilton, 2017), or Reason in a Dark Time: Why the Struggle Against Climate Change Failed, and What It Means for Our Future (Jamieson, 2014)).

Part of the reason there is still no clear progress is that there is still plenty of scepticism. Broadly speaking, the sceptics belong to one of two groups.

On the one hand there are the ‘reasonable’ sceptics who bring valuable contributions to the debate. These authors do not deny that climate change is happening, but are critical of model predictions (though see A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming (Edward, 2010) for a good rebuttal of that argument), and the efficacy of proposed policies to address the issue. Good starting points are An Appeal to Reason: A Cool Look at Global Warming (Lawson, 2008), or The Climate Fix: What Scientists and Politicians Won’t Tell You About Global Warming (Pielke, 2010). The latter has also published a short book that is sceptical of the oft-heard claim that climate change will increase natural disasters. His analysis, presented in The Rightful Place of Science: Disasters and Climate Change (Pielke, 2014), concludes that these claims are not borne out by the evidence. The Lomborg DeceptionIn short, there are simply more people and more property in harm’s way, giving the impression that natural disasters have become worse. Even Bjørn Lomborg in The Skeptical Environmentalist: Measuring the Real State of the World (2001) does not deny the reality of climate change (but see The Lomborg Deception: Setting the Record Straight About Global Warming (Friel, 2010), for a wide-ranging rebuttal of his environmental claims).

In the second group there is a vocal minority of climate sceptics and denialists who claim climate change is being exaggerated (Lukewarming: The New Climate Science that Changes Everything (Michaels & Knappenberger, 2016)), is not borne out by the evidence (Heaven and Earth: Global Warming, the Missing Science (Plimer, 2009), Global Warming – Alarmists, Skeptics and Deniers: Unstoppable Global WarmingA Geoscientist Looks at the Science of Climate Change (Robinson & Robinson, 2012)), or can be attributed to other natural causes such as long-term natural cycles (Unstoppable Global Warming: Every 1,500 Years (Singer, 2006)) or solar activity (The Neglected Sun: Why the Sun Precludes Climate Catastrophe (Vahrenholt & Lüning, 2015)). Climate Change: The Facts (Moran, 2015) bundles essays touching on these and other objections.

In their 2013 paper, Dunlap & Jacques noted that many climate change denial books (including the ones above) are published by conservative think tanks such as the Competitive Enterprise Institute, the Heartland Institute, the CATO Institute, or the Marshall Institute. Many of these think tanks receive funding from fossil fuel or other corporations, making their neutrality questionable. Though denialist books are now increasingly self-published via so-called vanity presses, Dunlap & Jacques highlight that such books are rarely peer reviewed, allowing authors to make scientifically inaccurate and discredited claims that they can keep recycling, no matter how often climate scientists have already patiently refuted these, or shown them to be logically untenable.

This leads to books on climate scepticism campaigns, as documented in the light-hearted The Madhouse Effect: How Climate Change Denial is Threatening Our Planet, Destroying Our Politics, and Driving Us Crazy (Mann, 2016), Climatology versus Pseudoscience: Exposing the Failed Predictions of Global Warming Skeptics (Nuccitelli, 2015), The Hockey Stick and the Climate Wars: Dispatches from the Front Lines (Mann, 2012), The Inquisition of Climate Science (Powell, 2011), Climate Change Denial: Heads in the Sand (Washington & Cook, 2011), Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming (Oreskes & Conway, 2010), and Climate Cover-Up: The Crusade to Deny Global Warming (Hoggan & Littlemore, 2009).

Within the welter of claims and counter-claims, Michael Mann has, and continues to be, a key protagonist, starting with his famous paper in Geophysical Research Letters that contained a figure showing global temperature change over the past 1,000 years, the “hockey stick graph”. The graph rapidly became an icon in the efforts to undermine the credibility of climate science and the researchers involved (see for example “A Disgrace to the Profession” (Steyn, 2015), or The Hockey Stick Illusion: Climategate and the Corruption of Science (Montford, 2010)). When in November 2009 thousands of emails from the Climatic Research Unit at the University of East Anglia were released during a server hack – an episode that became known as “Climategate” – Mann once again found himself the centre of attention. Snippets from these emails, some of which included correspondence with Mann, were rapidly taken up by popular media, with sceptics arguing they showed global warming was a scientific conspiracy and scientists were manipulating climate data. No fewer than eight committees, both in the US and the UK, investigated these allegations and found no evidence of fraud or misconduct. Mann covers this in his books, but also see The Climate Files: The Battle for the Truth about Global Warming (Pearce, 2006).

One final point worth mentioning on this topic, as often pointed out by climate scientists, is that even if things do not pan out as bad as we feared, given the potentially devastating impact, we should heed the precautionary principle, as laid out in Philosophy and the Precautionary Principle: Science, Evidence, and Environmental Policy (Steel, 2014).

Click here for Part 3, which looks at the discussion surrounding evolutionary biology.

On Truth and Post-Truth in Science

This post is the first of a four-part series on polarised discussions in science and how to deal with misinformation. You can find Part 2 on climate change here, Part 3 on evolutionary biology here, and Part 4 on dealing with misinformation here.


Oxford Dictionaries
proclaimed ‘post-truth’ as the international ‘word of the year’ in 2016, on the back of Michael Gove’s ‘Britain has had enough of experts – a defining moment of last year’s BREXIT referendum – and the incessant flow of claims and counter-claims during the US presidential election. It’s kept the commentariat busy, giving rise to at least one superb analysis (listen in to Jo Fidgen on the BBC Radio 4’s Nothing But the Truth) and some dark humour (the spoof ‘Mordor National Park’ twitter account set up in January, ‘We’d like to repeat again that yes, open campfires are allowed in Mordor National Park. Everything here is on fire.’).

But in the world of books on evolution, ecology, conservation, and climate change, ‘post-truth’ is not new. It’s 16 years since the publication of the first English edition of Bjørn Lomborg’s The Skeptical Environmentalist: Measuring the Real State of the World (2001), which (publisher’s blurb) ‘challenges widely held beliefs that the environmental situation is getting worse’; 36 years since Julian Simon wrote The Ultimate Resource (1998), arguing that humanity is not running out of natural resources; and 158 years since Charles Darwin unveiled his theory of evolution in On the Origin of Species (1859; 150th Anniversary Edition, Darwin & Endersby, 2009), triggering intense debate, disagreement, vitriol and accusations of lying that make today’s disputes look positively placid by comparison.

Our view on these issues is at once simple and complicated. As a company we are staunch believers in evolutionary theory, and the truth of findings from climate science that show how dangerous global warming is a consequence of humanity’s burning of fossil fuels, and of the loss and degradation of forests and other terrestrial ecosystems. But our staff and our customers will have their own views; as is right and proper.

Our purpose in this four-part series is to highlight recent publications that help readers think more critically, recognise pseudoscience, and deal with the large amount of spin, misinformation, and created controversies that pollute these discussions. In the process, we will give a brief overview of two areas that are the subject of intense and polarised public debate: climate science and evolution. As we wish to inform rather than rant, our selection of books includes views from various sides of the debates. Lest there be any doubt in the mind of the reader, this does not mean that we endorse all these views, or are planning to catalogue a wider range of books to give a platform to them. But, for the purpose of this piece, we feel we would do the reader no service by ignoring their existence.

Click here for Part 2, which looks at the discussion surrounding climate change.

Kaleidoscope 4.3.0 Bioacoustic Software Now Available

The newest version of Kaleidoscope, version 4.3.0, is now available to download from the Wildlife Acoustics website.

See below for details about the new features included in this release, as well as a handy table to see which version of Kaleidoscope is right for you, and some useful tutorial videos.

New features include:

New Bat Auto-ID Classifiers
New bat classifiers for North America, Neotropics, Europe and South Africa as well as updated common names for some species. The default setting for classifiers is now “Balanced” which is a useful compromise between the more sensitive and more accurate options.

New time-saving workflow features
New features in the results viewer window include:
• When opening a saved results spreadsheet, a file browser allows you to easily locate the folder containing the corresponding input files
• Bulk ID multiple selected rows
• Bulk copy files in selected rows to a specified folder

Full support for GUANO metadata (Kaleidoscope Pro only)
Kaleidoscope now reads and write GUANO information alongside Wildlife Acoustics metadata (WAMD).  This will been shown in the file at the end of the metadata notes window.

Bug fixes
Several bugs have also been fixed in the new release, details of which can be found in the Kaleidoscope documentation.

Which version of Kaleidoscope is right for me?

Kaleidscope Tutorial Videos


Kaleidoscope UK, Kaleidoscope Neotropics and Kaleidoscope Pro are all available to purchase from NHBS.

 

Book Review – Turtles as Hopeful Monsters

Turtles as Hopeful MonstersTurtles as Hopeful Monsters: Origins and Evolution

Written by Olivier Rieppel

Published in hardback by Indiana University Press in March 2017 in the Life of the Past series

Turtles have long vexed evolutionary biologists. In Turtles as Hopeful Monsters, Olivier Rieppel interweaves vignettes of his personal career with an overview of turtle shell evolution, and, foremost, an intellectual history of the discipline of evolutionary biology.

An initial, light chapter serves to both introduce the reader to important experts on reptile evolution during the last few centuries, as well as give an account of how the author got to study turtles himself. After this, the reading gets serious though, and I admit that I got a bit bogged down in the second chapter, which discusses the different historical schools of thought on where turtles are to be placed on the evolutionary tree. An important character here is skull morphology and a lot of terminology is used. Although it is introduced and explained, it makes for dense reading.

I think the book shines in the subsequent chapters that give a tour of the evolution of, well, evolutionary thinking.

When Darwin formulated his theories, he argued that evolution is a slow and step-wise process, with natural selection acting on random variation to bring about gradual change. This is the transformationist paradigm. Turtles as Hopeful Monsters, page 53The fossil record has yielded some remarkable examples where a slow transformation has occurred over time, such as the development of hooves in horses. But equally, there are many examples where no such continuous chain exists in the fossil record. Turtles are one such example, as they just suddenly appear in the fossil record, shell and all. Darwin himself attributed this to ‘the extreme imperfection of the fossil record‘. This lack of transitional fossils has of course been eagerly exploited by the creationist / intelligent design movement for their own ends.

But ever since Darwin, biologists have argued, and still do, that there exist mechanisms that allow for rapid innovation and saltatory evolution (i.e. evolution by leaps and bounds). This is the emergentist paradigm. Rieppel gives an overview of the different theories that have been put forward over the last two centuries, which is both illuminating and amusing. This covers such luminaries as Richard Goldschmidt (who coined the phrase “hopeful monsters”), Stephen Jay Gould (who revived it), and Günter Wagner (who provides the best current explanation according to Rieppel).

Just a little bit more about this phrase “hopeful monsters”, as this is such a prominent part of the book’s title. According to Goldschmidt, major new lineages would come about through mutations during early development of the embryo. This, of course, has the risk of producing monsters when the organism matures, likely resulting in premature death. So, Goldschmidt proposed a theory of hopeful monsters, where such drastic changes would successfully result in new evolutionary lineages with new body plans. His explanations, which required evolution to be goal-directed and cyclical (so-called orthogenetic evolution) have become obsolete, but he wasn’t entirely off the mark either. The best current explanations, according to Rieppel, comes from Wagner (author of Homology, Genes, and Evolution) and others who suggest radical changes to body plans do originate at the embryonic stage, and that the cause is the rewiring of the underlying genetic mechanisms.

Turtles as Hopeful Monsters, page 181The final two chapters of the book show how the debate over turtle shell evolution has gone back and forth between these two paradigms over time. Here again, Rieppel goes quite deep into morphology, this time of the shell, with accompanying terminology. Although the consensus seems to be leaning towards changes in embryonic development being responsible for the sudden appearance of the turtle shell in the fossil record, the final chapter deals with recent fossil finds from southwestern China that have revealed a potential missing link: a turtle with a fully developed belly shield.

Overall then, this book is a highly enjoyable romp through the intellectual history of evolutionary biology, using turtle evolution as its red thread. I could have used a bit more hand-holding here and there, and I feel the book would have benefited from an (illustrated) glossary or some extra illustrations. The reading gets quite technical when Rieppel goes into expositions on skull and shell morphology. That said, this book is an excellent addition to the popular science works in the Life of the Past series.

Turtles as Hopeful Monsters is available to order from NHBS.

The NHBS Guide to Small Mammal Trapping

Field vole (Microtus agrestis)

Small mammals form a vital component of our terrestrial ecosystems, both by contributing to overall biodiversity and providing prey for carnivores such as owls, pine martens and weasels. Survey data for many of our small mammal species is insufficient for them to be assessed as part of the UK BAP process and so supporting our national monitoring programme is incredibly important.

One of the most common ways of monitoring small mammals is through the use of live traps. These allow a range of species to be monitored simultaneously, and also allow biometric data such as weight and sex to be collected. In addition, estimates of population size and structure can be calculated using capture-mark-recapture (CMR) techniques. The use of live traps is also a great way for getting volunteers involved and providing them with an up-close experience of the animals they are passionate about.

Live-catch techniques, however, do have a few disadvantages in that populations can be affected by disturbance or mortality. Live-trapping is also unsuitable in certain areas (such as urban or busy rural regions) and requires a relatively large amount of time and expenditure.

Here we will take a look at some of the most commonly available live-traps used for small mammal survey.

Longworth Trap

Longworth Small Mammal Trap

The Longworth trap is made from aluminium which makes it lightweight for field use. This trap has been widely used in the UK for many years.

The trap consists of two parts: a tunnel which contains the door tripping mechanism, and a nest box, which is attached to the back of the tunnel. The nest box provides a large space for food and bedding material to ensure that the trapped animal is comfortable until release.

Advantages
• Widely used for many years; well documented in scientific literature
• Lightweight and durable
• Sensitivity of the trip mechanism can be adjusted
• Door can be locked open for pre-baiting

Disadvantages:
• Expensive
• Replacement parts not available
• Larger species can occasionally trip the trap without being caught
• Pygmy shrews may be too light to trigger the trap mechanism

Sherman Trap

Sherman Trap

Sherman traps work by use of a triggered platform which causes the door to shut when the animal enters. It folds down to a size and shape which is easy to transport.

Sherman traps are available in a range of different sizes to suit the species that you are hoping to catch. They can be purchased in aluminium or as a galvanised version which is more resistant to rusting.

Advantages:
• Lightweight and foldable – easy to transport and store
• Different sizes available, including long versions
• Easy to clean

Disadvantages:
• Difficult to add bedding/food as this interferes with the trap mechanism
• Traps may distort over time with repeated folding
• Danger of long tails being trapped in the door

BioEcoSS TubeTrap

The TubeTrap is a relatively new addition to the mammal trapping range and features an innovative design. It provides a safe method of trapping even the smallest mammals such as shrews.

The robust plastic construction has self-lubricating and fully replaceable parts. It can be purchased either with or without a shrew hole in the door. Spare doors are also available which means that you can convert the trap between shrew and non-shrew versions quickly and easily.

Advantages:
• All parts are easily user-replaceable
• Door can be locked open for pre-baiting
• Trigger sensitivity is easily adjustable; suitable for pygmy shrews
• Green colour of trap makes it inconspicuous in the field

Disadvantages:
• Door is a little fiddly to set – particularly for larger fingers
• Relatively new design means it has been tested fewer times in the field in comparison to Longworth or Sherman Traps

Economy Mammal Trip-Trap

Economy Mammal Trip-Trap

The Economy Trip-Trap provides a cheaper alternative to other mammal traps.  It has a traditional treadle design which closes the door behind the animal when it enters the trap.

This lightweight trap is suitable for short-term or occasional use and is also popular for trapping mice indoors either for surveying or for relocation.

Advantages:
• Cheap and lightweight
• Transparent for easy inspection
• Good for indoor use

Disadvantages:
• Doesn’t work well in wet/humid conditions
• Can’t pre-bait or change trigger sensitivity
• Trapped animals may chew through the trap

Pitfall Traps

P2.5 litre Plastic Bucketitfall Traps consist of a container which is sunk into the ground, into which small mammals can be caught. Traps can be baited if required and drift fencing can also be used to direct animals into the trap.

Small cans or buckets make ideal pitfall traps. If using buckets, lids can be fitted when not in use, which means that traps can remain in situ for extended periods of time.

Advantages:
• Able to catch multiple individuals
• Low maintenance

Disadvantages:
• More labour intensive than box traps to set up
• Trapped animals may attack eachother or be eaten by predators
• May become waterlogged in damp areas or in bad weather

Other survey methods

Other methods of surveying for small mammals include the analysis of owl pellets for mammal remains and the use of dormouse nest tubes. Hair and footprint tubes are also useful as well as searching for field signs such as tracks and faeces.

A comprehensive monitoring programme will most likely involve a combination of these methods, depending on the availability of participants and volunteers and the type of habitat present locally.

If you are interested in becoming involved in mammal survey in the UK, take a look at the Mammal Society website where you will find information on local recording groups, training opportunities and the latest mammal-related research.

Our full range of mammal traps can be found on our website.

 

Book Review – How to Tame a Fox (and Build a Dog)

How to Tame a Fox (and Build a Dog)How to Tame a Fox (and Build a Dog): Visionary Scientists and a Siberian Tale of Jump-Started Evolution

Written by Lee Alan Dugatkin & Lyudmila Trut

Published in March 2017 by Chicago University Press

How to Tame a Fox (and Build a Dog) tells a remarkable story about a remarkable long-term experiment you will most likely never have heard of. I hadn’t, despite my background in evolutionary biology. When the announcement for it crossed my desk a month or so ago, its subtitle immediately grabbed my attention.

For more than 60 years, Russian scientists have been cross-breeding captive foxes in Siberia, selecting for tameness, in a bid to learn more about the evolutionary history of animal domestication. Written by evolutionary biologist and science historian Lee Alan Dugatkin and Lyudmila Trut, who has been part of this experiment for close to six decades, it tells the story from its inception.

Back in 1952, geneticist Dmitri Belyaev had many questions regarding domestication. Though the breeding techniques were well understood, how did domestication start? The wild ancestors of today’s domestic animals would have likely run away or attacked humans, so what changed to make domestication possible? Being the lead scientist at a state laboratory that helped fur breeders produce more beautiful and luxurious fox pelts, he had both the knowledge and the means to tackle these questions. His plan? Experimentally mimic the evolution of the wolf into the dog using its close genetic cousin the fox. It was bold, both in its timescale, likely needing years – even decades – to yield results, but also in its timing. You see, Russia was still under the communist rule of Stalin, and one of his protegees, the poorly educated agronomist Trofim Lysenko, was waging a war on the “western” science of genetics. Scientists were expelled, imprisoned, and even murdered over their career choice. But Belyaev, having lost a brother this way, refused to back down. Far from Lysenko’s prying eyes in Moscow, in the frozen wilderness of Siberia, he started his breeding experiments, purporting to improve breeding rates in case anyone did come asking. Lyudmila joined him in 1958, and this book is their story.

It’s a story of science, and the authors do a good job distilling the findings into a reader-friendly format. The results are fascinating as the foxes rapidly evolve from wild animals to tamer and tamer companions that crave human interaction, undergoing a raft of subtle morphological changes in the process. But it’s also very much a human story. Of the women, often local peasants, who came to work at the fox farm, not necessarily understanding the science, but showing immense dedication to the cause. Of the researchers, who developed a deep love for, and connection with the generations of foxes, who rapidly became more dog-like in their behaviour and appearances.

It’s a story of persistence against all odds; the experiments are running to this day and have survived Stalin’s brutal regime, the Cold War, and the dissolution of the Soviet Union, with all the economic turmoil that that caused. And it’s a story of an opportunity most scientists can only dream of: being able to follow up on previous findings and answering questions raised by previous experiments. Uniquely, this played out during (or perhaps was able to keep going because of) a period in which our knowledge of genetics, and the technologies available, kept on developing. The measuring of neurochemicals, epigenetics, PCR, genome mapping, next-generation sequencing… as new questions were being generated, so new techniques became available to probe deeper into the mysteries of the domestication.

The book makes for fascinating reading and is hard to put down once you start it. Highly recommended.

How to Tame a Fox (and Build a Dog) is available to order from NHBS.