Going to Bat for Bioacoustics: How Acoustic Monitoring is Helping to Save Bats – Webinar Round-up

Recently, Wildlife Acoustics and Bat Conservation International partnered together to host a webinar highlighting the use of bioacoustics in bat conservation across the globe. The webinar featured three case studies tackling the impacts of white-nose syndrome, habitat loss and climate change with the help of bioacoustic technology. Here, we provide a summary of these case studies and the applications of acoustic monitoring in these investigations. 

Florida USA, Dr. Melquisedec Gamba-Rios 

Endemic to the region, the Florida Bonneted Bat (Eumops floridanus) is increasingly threatened by habitat loss from sea level rise and destructive development. This species has one of the smallest ranges in Southern Florida and utilises old tree cavities and large, open spaces for roosting and feeding. Dr. Gamba-Rios and his team sought to identify critical habitat for this endangered species using bioacoustics, hoping to support their fragile populations.  

The team used acoustic recorders to identify key roosting and feeding areas for the species. Interestingly, they found that Miami’s zoo, golf courses and tropical parks had high numbers of Florida Bonneted Bat calls. The research showed that the large, open areas surrounded by forest and absence of artificial light of these locations provided an ideal foraging space for the species. 

Since these bats require older, cavitied trees, the habitat of the group is at risk as development increases. Plans for water park construction were proposed on a key site for this species, however the evidence gathered here was used to challenge the proposal, resulting in its rejection to protect key bat habitat. In March 2024, over 1.1 million acres of critical habitat were designated for the species in Florida, including foraging areas in urban habitat and over 4,000 acres of Miami Pine Rocklands. Federally protected species are known to be twice as likely to move toward recovery than those without protection, so the designation of these spaces is incredibly important in securing the future of this species.  

Shows a small brown bat with closed eyes, it is held in a blue blanket in daylight
Florida Bonneted Bat by Florida Fish and Wildlife via Flickr

Nyungwe National Park, Dr. Jon Flanders 

Last seen in 1981, the Hill’s Horseshoe Bat (Rhinolophus hilli) was considered a ‘lost’ species in Rwanda.  In January 2019, a group of scientists and researchers, including Dr. Jon Flanders, set out on a 10-day expedition in Nyungwe National Park, looking to rediscover this elusive animal.  

Nyungwe National Park rangers played a key role in the early stages of this project, identifying caves and key habitat for bats in the area. The rangers conducted acoustic monitoring using SM4 Acoustics to identify foraging and roosting areas, collecting over 260,000 files of acoustic data. Eight of these recordings successfully detected the calls of the Hill’s Horseshoe Bat, found in small, defined ranges. During the 10-day trip, the team worked relentlessly to catch, measure and collect DNA samples from bats using mist nets and harp traps in these locations. The team successfully captured two Hill’s Horseshoe Bats and confirmed the capture of this critically endangered species with museum archive specimens. The expedition highlighted the spectacular diversity of Nyungwe National Park which features a large number of rare and endemic species, and these findings reinforce the parks importance as a biodiversity hotspot.

A brown bat is hanging upside down. it has white fluffy mould covering its wings and face
Little Brown Bat with white-nose syndrome by U.S. Fish and Wildlife Service via Flickr

White-nose Syndrome, Dr. Amanda Adams 

White-nose syndrome is a cold-loving, infectious fungal disease found in bats. The fungus manifests in a total skin infection, most visible around the muzzle of the animal. This infection is responsible for significant mortality in several species, where the infection causes bats to wake often during hibernation – burning their fat stores, causing dehydration and starvation. Infected bats can expend up to twice the amount of energy as healthy individuals during hibernation, severely impacting their ability to survive the winter. Because of this, six million animals have succumbed to this infection so far, impacting 12 out of 44 species found in the USA.  

Dr. Amanda Adams sought to use bioacoustics to enhance the management of foraging habitat to support these species through hibernation. The team used the Song meter mini to search for the presence of bats and observe their feeding behaviours. They found that feeding behaviours were observed up to three times more in prey patches, and this allowed researchers to designate feeding habitats for affected species. The survey will be used to inform vegetative management on passing corridors, aiming to increase the productivity of foraging areas to support the health of infected bats.  

The Going to Bat for Bioacoustics webinar provided an engaging insight into the applications of acoustic monitoring in bat research, showing how the technology can be used to support bat conservation. To learn more, the Wildlife Acoustics website has a range of training courses and webinars. Upcoming events can be found here 


This Week in Biodiversity News – 1st July


An ocean-dwelling fungus has been found to break down marine plastic pollutionParengyodontium album has recently been added to the list of four species of plastic degrading fungi. Researchers have discovered the fungus’ ability to degrade polyethylene plastic, the most abundant form of plastic in our oceans, following a period of exposure to UV radiation from sunlight. It is estimated that the fungus can break down polyethylene at a rate of 0.05% each day, and with over 400bn kilograms of plastic produced annually, this discovery has the potential to provide an answer to the problem of marine plastic pollution.

Image by Papahanaumokuakea Marine National Monument via Flickr

A recently launched programme will aim to restore a 193km stretch of coral reef. Named ‘Ako’ako’a, the project will be one of the first to attempt such large-scale restoration and will focus this effort on the west coast of Hawai’i Island. Due to start in 2025, researchers will identify individuals with desirable traits in the face of climate change, such as high thermal tolerance, fast growth and tolerance to pollution. These selected individuals will then be used to produce larvae with strengthened genetic resistance which will be released during natural spawning periods. With increasing declines occurring over more frequent bleaching events, ‘Ako’ako’a aims to restore ailing reefs across the region.  



Canada is set to ban open-net salmon farming in British Columbia in five years. The announcement follows the government’s decision to transition to closed-containment methods in 2019. With more than half of wild salmon stocks declining in the province, the decision has been made to make a step towards protecting wild pacific salmon populations through sustainable aquaculture and clean technology. The commitment has been praised by many, but there are concerns for significant losses in a $1.2bn industry and disruptions impacting up to 6,000 jobs.  

Iberian Lynx are no longer endangered under the IUCN Red List of Threatened SpeciesLynx pardinus has been promoted to ‘vulnerable’, a triumph resulting from a 20-year conservation programme by the EU, national governments in Spain and Portugal and wildlife NGOs. The population initially plummeted to under 100 individuals due to human persecution, reduced food sources and habitat loss across the region. Now, 20 years later, the population has reached over 2,000 in the peninsula. Over 86% of the current population resides in Spain and experts expect to see a full recovery in its native range over the next century. 

A pale rhino laying down on a bed of grass next to a tree
Northern White Rhino by Heather Paul via Flickr

Scientists have successfully implanted a rhinoceros embryo using IVF techniques for the first time. This breakthrough could prove to be a lifeline in saving the Northern White Rhinoceros from extinction. There are only two surviving females in the world, both based in Ol Pejeta Conservancy in Kenya where they are under 24-hour guard. Proving the feasibility of the technology, researchers can now move to transferring a Northern White Rhinoceros embryo into a surrogate Southern White Rhinoceros. This technology brings the scientific community closer to successfully reproducing this critically endangered species, which would significantly benefit the ecosystem of central and eastern Africa.  



The first Scottish Wildcat kittens born outside of captivity have been recorded in Cairngorms national park. Their birth follows the reintroduction of 19 adult wildcats last summer and has been confirmed using camera trap footage. This discovery marks an important milestone in the efforts to reintroduce the species to Scotland, and they are the first to be born in the wild for more than five years. With significant population declines due to habitat loss and human persecution, this success story is an important turning point for the species and will help to reverse centuries of decline.

A scottish wildcat walking across a fallen tree in the woods
Scottish Wildcat by Chris Parker via Flickr

A subgroup of Gray Whales has undergone a significant decline in body length in the past 20-30 years. The Pacific Coast Feeding Group (PCFG), consisting of around 200 individuals, have decreased in size over the past 20-30 years. Researchers found that the group is 13% smaller than those born before 2000, which equates to around 1.65 metres lost in a mature adult. This smaller size could have significant consequences for the health and fecundity of the group, impacting survival rates of calves and their ability to store energy for growth and maintenance.

Solitary Bee Week 2024

Solitary Bee Week was founded in 2018 to raise awareness of the importance of solitary bee populations across the globe. Now hosted by Buglife, this week-long event hopes to encourage the public to pledge their support for these unsung heroes. Solitary Bee Week 2024 (Monday 1st July – Sunday 7th July) gives us a chance to support these vital pollinators and #EarnYourStripes. 

A hairy mining bee resting on a leaf. It has orange hair on its hind legs and long white hair on its thorax, legs and head
Andrena gravida by Frank Vassen via Flickr

What are solitary bees and why are they important? 

It is estimated that there are between 20,000–30,000 solitary bee species across the world, and the UK is home to 240 of them. Solitary bees do not produce wax or honey, do not form hives, and do not exhibit swarming behaviours – a striking difference to the behaviours we usually associate with bees. They typically nest in underground burrows or in the hollows of plant stems and tunnels, so it is no surprise that we are seeing a downturn in the abundance of the group with increasing urban development and environmental decline.  

As we urbanise, we remove the habitat of these extraordinary pollinators – we are seeing fewer hedgerows and wildflower meadows, which would otherwise provide vital food sources for these insects. Partnered with agricultural intensification, environmental changes are contributing to the significant declines we see in pollinators. Solitary bees are important for pollination, and their loss could be devastating not only to the environment, but for food security worldwide. Solitary Bee Week is helping raise awareness of these insects in the hopes of managing their threats and preventing further declines in the future. 


Image by Buglife


How can I take part? 

From pollinator identification workshops to solitary bee walks, Buglife is hosting a range of events in support of Solitary Bee Week. An interesting highlight of the week, Buglife have collaborated with Hayley Herridge the Pollinator Gardener to create the ‘B-Lines Garden’ to be featured in the Hampton Court Palace Garden Festival – highlighting the importance of insect pathways to provide corridors for pollinators. Find the full week’s itinerary here 


What can I do to support my local bees? 

Solitary Bee Week is the perfect time to pledge your support for local solitary bees.  

Leaving an area of exposed soil and providing bee hotels are great ways to provide nesting areas. Mining bees account for around 70% of solitary species – patches of exposed soil are an excellent way to provide space for this group, where they create underground nesting burrows. For cavity nesting bees, such as Red Mason Bees, hotels are a great way to provide nesting habitat where they will lay eggs in the dry, hollow tubes. Planting wildflowers and nectar-rich plant species is another way to support pollinators by providing an important food source. 

Here we have chosen a selection of products in our range that can support solitary bees in your outdoor space: 

#262715 Solitary Bee Bricks  


#217363 Insect Tower 


#257245 Solitary Bee Nesting Tin 



#264931 Bee Barn Gift Box 


#259552 Solitary Bees (Hardback) 

#261456 Hairy-Foot, Long-Tongue (Paperback) 


#244919 The Solitary Bees (Hardback) 


Author interview with Christopher Hart – Hedgelands

Hedgelands book cover showing an artistic drawing of green hedge leaves on a dark green background, with leaves woven over the white text in capital letters saying 'Hedgelands.'Hedges and hedgerows have long been an integral part of the British landscape and are now considered the greatest edge habitat on earth. Hedgelands shines a spotlight on the hawthorn and hazel of ancient hedges, thorny scrub and the creatures that call this habitat their home, telling you everything you could ever want to know about this wild, diverse and incredibly rich habitat – it may even change your perspective of the humble British hedgerow for good.

Portrait of author Christopher Hart wearing a checked shirt, gillet and flat cap with a large hedge behind him.

Christopher Hart has authored ten literary and historical books that have been praised by both The Times Library Supplement and Sunday Sport. He’s written numerous short stories, essays and reviews on a range of subjects, and has worked as a freelance journalist since the 1990s. Hart now lives on a seven-acre plot in Wiltshire which he is in the process of rewilding.

We recently had the opportunity to chat with Christopher about what inspired him to write a book about hedges, how he thinks we can change peoples perceptions of the humble hedgerow and more.

As a writer of primarily historical fiction, what inspired you to write a book celebrating British hedges?

Well, I’ve had quite a chequered career: as well as the historical fiction thing, I’ve been a Mr Whippy Ice Cream Van Driver, Theatre Critic of the Sunday Times, and Agony Uncle for Time Out magazine. None of which qualify me to write about hedges! But really the English countryside is a lifelong passion, and working on our own patch of seven acres, with intermittent grazing, plus trying to encourage maximum wildlife, has taught me directly how vital hedges and thickets are to the entire system. Then my friend Jonathan did this survey on one of his own restored and re-laid hedges, found vivid evidence of the huge benefits to invertebrates, and said to me, Why don’t you write a book? So that’s how it started.

Jonathan stood in front of his re laid hedge.
Jonathan stood in front of his re-laid hedge, by Christopher Hart.

Hedgerows have demonstrable benefits to the environment, yet are often overlooked and under-appreciated by many. How can we change public perception of and attitudes towards the humble hedgerow?

I think real-life examples always work better than statistics. And maybe demonstrating to people directly how many birds, butterflies etc. flourish in our hedgerows could have a great effect, as could enlarging and protecting hedgerows on amenity land, where people actually go regularly, rather than farmland: allotments, for instance, churchyards, and even school grounds.

How does the historical, manual management of hedgerows compare to the mechanical methods used in some agricultural practices today? And how can we encourage a change to more conservation-centred management in these spaces? 

Like every other farm job, the old manual method of hedge-laying with an axe and billhook is a great art and beautiful to watch – but also very slow and expensive! Unless it could be done by teams of roving volunteers, which is a promising idea. But even flailing can be made instantly more eco-friendly by simply doing it every two years instead of one. That could really help, and as I think Jake Fiennes suggests, would actually save the average farmer around £2,500 a year on diesel alone.

A generous field margin on a productive arable farm showing a wide, long grass border against a flourishing hedge.

Can you share some examples of individuals, organisations or locations that are paving the way for best-practice hedgerow management?

I think all the big conservation charities, like the RSPB, are very aware of hedgerows’ importance now, but there are also some admirable specialists like Hedgelink. And the Devon Hedge Group are terrific, doing direct, hands-on work there. If you want to see a truly spectacular hedge though, don’t miss the massive bristling rampart of the ‘Nightingale Hedge’ at Knepp. It’s magnificent! 

How can we get involved in bringing hedgerows to our local communities, and how may we incorporate a hedge into areas with limited space?

One reader of my book has already contacted me for advice on how the hedges in his daughter’s school grounds could be made more nature friendly, perhaps by re-laying or just allowing to thicken up that’s a great example of what we can do quite independently of farmlands. Another suggestion I have is to ‘rewild’ a typical, slightly overmanaged garden hedge, that might be just mono-cultural beech or holly, and let climbers and creepers into it as well: relax about a bit of ivy, or even bramble, let a few nettles grow, or as we have done, allow some self-sown honeysuckle to trail over your privet hedge. Then go out on a warm summer evening and admire the moths that turn up. If the sight of an Elephant Hawk moth doesn’t convert you, I don’t know what will! 

Man-made thicket full of blackthorn in a field.

What’s next for you? Do you have plans for more nature writing?

I most certainly do. The only difficulty is choosing which one to pursue. In the last year I did some experimental ‘re-bogging’ of a small riverside field that was just too waterlogged to offer good grazing, or any other kind of useful food production. It took me all of half an hour with a spade, diverting a field-side drainage ditch. The result has been a quite spectacular explosion of dragonflies and snipe in the winter. I’d love to write something about that. ‘Re-bogging Britain, or ‘The Joy of Re-bogging. What do you think? 

Hedgelands book cover showing an artistic drawing of green hedge leaves on a dark green background, with leaves woven over the white text in capital letters saying 'Hedgelands.'

Hedgelands is published by Chelsea Green and is available from our online bookstore.

Top 5: Trail Cameras

Trail cameras can be extremely useful tools for ecologists and naturalists, enabling simple non-invasive monitoring of wildlife. Here we feature five of our most popular models, highlighting the key features of each for easy comparison. 

For more detailed information please read our Trail Cameras Buyers Guide. 

#256294 Browning Spec Ops Elite HP5  

Browning Spec Ops Elite HP5 trail camera

A good quality trail camera with fast trigger speed, this model is an excellent all-rounder.

Image quality: 24 mp
Video quality: 1920 x 1080p
Video length: Max 2 minutes
Glow: No glow
Trigger speed: 0.1-0.7 seconds
Recovery: 0.5 seconds
Flash range: 30 metres
Detection range: 24 metres
RADIANT 5 illumination technology


#258744 Spypoint Flex 

#258744 Spypoint Flex trail camera

An innovative low-glow trail camera with cellular transmission to transfer images to a mobile device.

Image quality: 33 mp
Video quality: 1920 x 1080p
Video length: Max 15 seconds
Glow: Low glow
Trigger speed: 0.3 seconds
Flash range: 30 metres
Detection range: 30 metres



#259714 Num’axes PIE1059 Trail Camera

Cost-effective and entry-level, the Num’axes PIE1059 is a robust, no-glow trail camera with great resolution.

Image quality: 32 mp
Video quality: 1920 x 1080p
Video length: Max 30 seconds
Glow: No glow
Trigger speed: 0.6 seconds
Flash range: 20 metres
Detection range: 20 metres
2″ colour screen



#256293 Browning Recon Force Elite HP5

A low-glow alternative to the Browning Spec Ops Elite HP5. This camera is a good all-rounder and is suitable for fast-moving animals.

Image quality: 24 mp
Video quality: 1920 x 1080p
Video length: Max 2 minutes
Glow: Low glow
Trigger speed: 0.1-0.7 seconds
Recovery: 0.5 seconds
Flash range: 39 metres
Detection range: 30 metres
RADIANT 5 illumination technology


#246930 Spypoint Solar-Dark Trail Camera

A super fast, no-glow model, this trail camera features a solar panel providing users with an extended battery life.

Image quality: 12 mp
Video quality: 1280 x 720p
Video length: Max 2 minutes
Glow: No glow
Trigger speed: 0.07 seconds
Flash range: 27 metres
Detection range: up to 33.5m
2″ colour screen




Recommended Reading:

#222466 Camera Trapping for Wildlife Research  

Paperback | June 2016

A guide to the use of camera trapping for most common ecological applications to wildlife research.



#227479 CCTV for Wildlife Monitoring 

Paperback | June 2016

A handbook on the use of CCTV in nature watching, conservation and ecological research.


Restore Nature Now 2024

The Restore Nature Now March took place in Central London on Saturday 22nd June. The march saw the coming together of over 350 charities, businesses and direct-action groups calling on the government to work harder to protect biodiversity in the UK and Restore Nature Now!  Some of the NHBS team travelled up from Devon and joined the estimated 100,000 people that took part in the march. 


‘The Restore Nature Now march felt really galvanizing. It was heartening to walk with so many ecologists, scientists and activists and to dip into conversations about the amazing work people are participating in around the country to lead and assist in nature recovery. I was really moved by the impassioned speeches in parliament square from a host of brilliant speakers, and the sight of three peregrine falcons over Westminster was a potent and magical moment too!’ – Oli


A large puppet bat held by a crowd.
A large bat puppet made by the Bat Conservation Trust.
A vibrant banner to stand up for nature.


‘It felt great to be a part of the march and join so many other people passionate about our nature and wildlife.  The speakers at Parliament Square were inspirational, sadly I’m not sure if our politicians heard them, but we will be back and continue to be a voice for nature.’ Adam

An estimated 100,000 took part in the march.
The march was supported by a range of nature-focused organisations including RSPB, Plantlife and WWF.
The family-friendly march had lots of entertainment and interactive activities.


Restore Nature Now took place to call on political parties to act on the climate crisis and use the upcoming general election as a turning point. Their demands are as follows: 

A PAY RISE FOR NATURE: To facilitate nature recovery, agricultural landowners need more support to make climate-friendly choices, and to do this, Restore Nature Now urged the UK government to double the nature and climate-friendly farming budget.  

MAKE POLLUTERS PAY: Big business significantly contributes to environmental decline and the climate crisis, and to tackle this, organisers asked for new rules and regulations to be introduced to enforce greater contributions.  

MORE SPACE FOR NATURE: Restore Nature Now campaigned for the expansion and improvement of protected areas and called for an improvement of public land and national parks to make a greater contribution to nature recovery. 

A RIGHT TO A HEALTHY ENVIRONMENT: Calling for the creation of an Environmental Rights Bill, organisers are looking for the UK Government to drive better nature decisions to improve public health. 

FAIR AND EFFECTIVE CLIMATE ACTION: To solve the climate crisis, and in turn save nature, more investment is required into effective climate action. 

Restore Nature Now was a fantastic demonstration of hope and a call to action for the UK government. Our staff had an enlightening experience and thoroughly enjoyed the entertainment and talks throughout the day.  

30 Days Wild: NHBS Update

30 Days Wild is an annual challenge organised by The Wildlife Trusts which encourages people across Britain to do one wild thing every day in the month of June. This year marks the 10th anniversary of 30 Days Wild, and the Trusts are celebrating with more people than ever. From dining al fresco to taking part in a beach clean, there is something for everyone with this initiative. NHBS are taking part in 30 Days Wild this year, and we would like to share how our staff are exploring the wonders of nature.

Here’s a selection of things we’ve done so far:  

Jo has been working hard to grow strawberries at home and has finally managed to pick the first of her home-grown fruits!  

A strawberry plant on a bed of straw. A juicy red berry is ready to be picked.


Simon has been bird watching at Slapton Sands and Berry Head in the summer sun and has found some fascinating coastal species, including Guillemots and Cormorants. 

A rock face full of nesting birds

A guillemot sits on the ocean surface. It has chocolate brown upper side and white underside with a dark coloured beak


We had a wildlife hunt on our office lawn – #NoMowMay and Let it Bloom June have treated us to an amazing diversity of organisms, including a Southern Marsh Orchid, a Painted Lady Butterfly and a Little Brown Mushroom.  

A painted lady butterfly is perched on a dandelion flower in a lawn.

A little brown mushroom is pictured between blades of grass in a garden lawn


Oli captured a fantastic image of a female Great Spotted Woodpecker while visiting a bird feeder in his local area! 

A great spotted woodpecker is grasping onto a bird feeder full of peanuts.


In Brixham Harbour, Simon has been spotting cetaceans and marine mammals including Harbour Porpoise and Grey Seals!  

A harbour porpoise breaking the waters edge

A grey seal is resting on a large pipe in a harbour.


30 Days Wild has been a great way for all of us at NHBS to explore nature. The initiative is a perfect reminder to take some time outside every day, take a deep breath and to smell the flowers. Follow our journey throughout June on Facebook, Instagram and X (formerly Twitter) – stay tuned to see some wildlife drawings, leaf rubbings and a busy bug hotel! 

This Week in Biodiversity News – 17th June

Climate Crisis 

Wildfires are threatening the unique ecosystems of Brazil’s tropical wetlands. The Pantanal encompasses the world’s largest tropical wetland and contains a UNESCO World Heritage Site. The wildfire season has arrived earlier than normal – state climate experts, and has already destroyed 32,000 hectares of land. Since the start of 2024, there have been over 1,300 recorded wildfires, and as the region moves into the dry season, dry winds and reduced rainfall increase the risk of further environmental deterioration. Brazil’s federal government has announced that it will be working with other state governments to combat the fires, emphasising preventative measures for these disasters.  

Specialist pollinators in the tropical rainforests of South America are under threat from land use change. A study revisiting historic data on the baseline diversity of orchid bees in Brazil found that deforestation and intensifying agriculture has caused significant disruption in the abundance and diversity of the group. Important both economically and ecologically, this vibrant group are key pollinators of over 30 plant families in the region and play a vital role in agriculture. In 1997, Brazil was considered one of the most diverse regions for orchid bees across the globe, but this changed with significant losses of tree cover. Their loss is part of a broader picture of the Amazon’s native pollinators, and without them, agriculture and natural ecosystems could collapse. This study highlights the need for regular monitoring, allowing us to observe the impacts of destruction more clearly. 

A forest burning under wildfire
Wildfires are increasing in severity and frequency across the planet. Image by Thibaud Moritz

Exposure to toxic particles from wildfires has led to the death of over 50,000 Californians in a decade. The first study to quantify long-term impacts of chronic exposure to PM2.5 from wildfires, found that over 52,000 premature deaths were attributed to exposure and over $432 billion was spent on wildfire smoke-related health expenses from 2008–2018. PM2.5 microscopic particles can bury into lung tissue before entering the blood stream – they are associated with various health conditions and can cause heart attacks, premature birth and early death. The study has conjured a call to action for forest management and mitigation of climate change.   


After an absence of around 200 years, a small group of the world’s last truly-wild horses have been translocated to Kazakhstan. Seven Przewalskis’s Horses, one stallion and six mares, have been translocated from zoos in Prague and Berlin. Historically part of steppe grasslands in central Asia over 5,000 years ago, these animals have returned to their native Kazakhstan to improve the biodiversity of the landscape. Their dung can spread seeds and fertilise the land, and foraging behaviours can encourage water absorption in the soil. This translocation is part of a plan to relocate 40 horses to the region over the next five years. This follows a similar project undertaken in Mongolia, with nine flights of Przewalski’s Horses relocated with great success – there are now over 1,500 wild horses in the region with a stable population.  

Przewalkski’s Horses are returning to Kazakhstan after 200 years. Image by Tambako the Jaguar via Flickr.

A new tool has been developed which allows conservationists to forecast coral disease. Led by the University of Hawai’i, researchers have developed an ecological forecasting technology using environmental indicators to better predict disease outbreaks in coral. This allows conservationists to intervene at the appropriate time, improving conservation outcomes for affected coral species. Coral species are increasingly threatened by pollution, human impact and climate change, yet we depend on coral-based ecosystems for many things, including medicine and coastal protection from storms and erosion. The use of ecological forecasts could prove to be critical in conserving and managing marine ecosystems, ensuring environmental resilience in the face of climate change. 


Australia’s foxes are contributing to devastating declines of freshwater turtle populations across the country. It is estimated that 1.7 million foxes kill around 300 million native Australian animals a year, including reptiles, and have been consuming entire nests of turtle eggs and reproductive females. The Eastern Long-necked Turtle, the most common species along the Murray River, has experienced 90% declines since 1980. Nearly half of all freshwater turtle species are listed as threatened in at least one state in Australia, and with foxes found in over 80% of the mainland, the threats to the species are mounting. To counteract these pressures, the 1 Million Turtles scheme is hoping to hatch one million eggs, eventually returning the turtles to the water while overcoming data gaps for the group. The scheme is also looking at preventative measures through the construction of fox proof fences and artificial islands.  

African Elephant
Elephants have been found to call each other by name. Image by Mandy Goldberg via Flickr

Research has shown that elephants call each other by name. This is the first recorded example of naming in wild animals that does not involve imitation, as seen with parrots and dolphins. Researchers have used AI to analyse the vocalisations of two wild herds in Kenya, identifying over 400 distinct calls. The study found that the herds were using specific sounds to address an individual, and were able to recognise and react to calls addressed to them, even reacting positively to calls from family members. Names were more commonly used by adults and were typically used over long distance or when addressing young elephants. There have been calls for further research, but this study suggests that elephants may have the ability for abstract thought.  

Author interview with Helen Scales: What the Wild Sea Can Be

What the Wild Sea Can Be book cover showing an artists drawing of the ocean, sea and rocks.In this bracing yet hopeful exploration of the future of the ocean, Helen scales relays the fascinating, deep history of our seas and reveals how prehistoric ecology holds lessons for the oceans of today. In light of the current challenging climate conditions, she offers innovative ideas to protect our coastlines and the species who live there, highlighting the importance of ethical and sustainable fisheries, the threat posed by deep-sea mining and more. This inspiring tale urges us to fight for a better future for the ocean before it’s too late.

Helen Scales portrait.

Helen Scales is a marine biologist, author and broadcaster who teaches Marine Biology and Science Writing at the University of Cambridge. She regularly writes on ocean discoveries for National Geographic Magazine and The Guardian, is an avid scuba diver, cold-water surfer and trained free diver who has lived and worked around the world, and is currently spending her time between Cambridge and the wild Atlantic coast of France.

We recently had the opportunity to talk to Helen about her most recent book What The Wild Sea Can Be, including how she first became a marine biologist, how we can secure a better future for our oceans, her current projects and more.

Firstly, can you tell us a little about yourself, your career, and how you came to be a marine biologist?  

For as long as I can remember, I’ve loved nature and being outdoors. My family spent a lot of holidays in Cornwall, so my training grounds as a marine biologist were windswept Atlantic beaches. This is when I began my lifelong love of rock pooling, shell collecting and rummaging around in seaweed to see what I can find. 

As a teen, I became a committed environmentalist. I was outraged by the issues of the day, including deforestation in the Amazon, and became vegetarian. Around the time I was beginning to contemplate a career as an environmental scientist, a school friend and I decided to take up scuba diving. We lived in land-locked, suburban Surrey – not an obvious place to learn to dive – but there was a friendly dive club that met each week and trained at the local swimming pool in an enclosed sea of eye-stinging chlorination. Our open water training dives were mostly back down in Cornwall, and that’s where I truly fell in love with the ocean and knew that I wanted to become a marine biologist. Instead of running off to save the rainforests, I wanted to save the ocean. I often say that was when my vision for my future turned from green to blue. 

So I left school, diving licence in hand, and immediately headed off on adventures to explore more of the seas. I’ve been incredibly lucky to travel to many corners of the ocean, studying and researching, and taking every opportunity I could to get myself underwater. For my PhD, I went to Borneo and studied the lives and loves of one of the biggest and I think most beautiful fish on coral reefs, the Humphead Wrasse.

Over the years, I’ve worked for various conservation organisations, including WWF in Malaysia where I mapped marine life around an archipelago of coral islands. Later, I worked on efforts to control the global trade in endangered marine species. Then, quite out of the blue, I discovered a previously unknown passion for writing and presenting, and decided to focus on sharing stories with people about the wonders and troubles of the living ocean.

1 Ocean diving exploration mission on a deep coral reef in the heart of the Pacific showing four divers swimming over a deep coral reef.

This book is cautiously optimistic about marine conservation. What have been the most impactful positive actions that have helped the recovery and management of our oceans? 

A big part of my optimism for the future is the fact that ocean life has an incredible capacity to recover and heal, given a chance. Often all it takes is for people to stop hunting and killing so many animals. 

For instance in the 1980s, commercial whaling was banned following the successful Save the Whales campaign, and now we’re seeing many whale populations doing a lot better. Back in the mid 20th century, whalers had killed around 99% of the Blue Whale subspecies from Antarctica, the biggest animals ever known to exist. Just recently, hydrophones stationed in the Southern Ocean have been detecting the songs of Blue Whales, a good sign that their numbers are on the rise.

Recoveries are happening in many other ocean species. After being gone for decades, Bluefin Tuna are showing up again around Britain, in part because catches have been better controlled in the Atlantic. Populations of oceanic sharks, like Great Hammerheads and Great White Sharks, are gradually increasing in the western Atlantic following years of overfishing. Up until the 1990s, the United States had a policy that actively encouraged shark exploitation. These wild animals were classified as an underutilised resource. That didn’t go well for sharks and their populations crashed. Finally, attitudes shifted, and the government rolled back the shark killing incentives and introduced measures to protect them in commercial and recreational fisheries. 

A lone Sunflower Sea Star (Pycnopodia helianthoides) or starfish crawling on the seabed off Vancouver Island, British Columbia, Canada. The species has been devastated by sea star wasting disease.

Another proven way to let the ocean recover is to leave parts completely alone. That means no fishing or exploitation of any kind. People have been trying out these kinds of highly protected marine reserves for decades and showing that this is a powerful way to let nature in the ocean heal, grow and proliferate not just inside the watery reserve boundaries but outside too.

Some of these reserves are quite tiny, and some are enormous. At both big and small scales there can be tremendous benefits for wildlife and for people when these kinds of reserves are well designed and well enforced. In Scotland, a tiny reserve off the island of Arran has helped seabed ecosystems recover and flourish from years of trawling; Lamlash Bay is now home to lots more big lobsters and scallops, and the fragile habitat-forming seaweed called maerl. And in the middle of the Pacific, the vast Papah?naumoku?kea Marine National Monument covers more than 1.5 million square miles of sea, including the spawning grounds of migratory Yellowfin and Bigeye Tuna whose numbers are increasing.

The entire ocean will never be strictly protected. What’s needed are more of these kinds of carefully located and wellenforced reserves to protect important places like the spawning grounds of rare and endangered species, and safeguard deep sea mounts covered in rich coral and sponge gardens combined with wider measures to sustainably manage the rest of the ocean.

Schoolmaster snapper (Lutjanus apodus) in red mangrove(Rhizophora mangle) and turtlegrass (thalassia testudinum) habitats. Image made on Eleuthera Island, Bahamas.

What the Wild Sea Can Be discusses possible solutions to the big problems that humanity will face in terms of future oceans. Are you aware of any lesser-known or less popular solutions that could be beneficial in securing a sustainable ocean?  

Certain solutions for a sustainable ocean tend to be unpopular among powerful people who are creaming off profits from the seas, often at huge industrial scales. Take the factory ships that head to Antarctica to extract krill. These finger-sized crustaceans are hunted by truly massive ships. One recently built in China is 140m (460ft) long longer than a football field. The technique for catching krill involves lowering down giant nets and pumping up hundreds of tonnes of krill every day, working nonstop for weeks at a time. The krill is processed on board, mashed and ground to make fishmeal and oils, and most of it is destined for fish farms to be fed to livestock like salmon.

Krill are fantastically abundant in the Southern Ocean. The snag is that the places where fisheries target krill in their densest, largest shoals are the very same places where Antarctic wildlife flocks to feed on them. Whales, seals, penguins and seabirds depend on krill. Studies suggest that fisheries depleting local krill populations can make it tough for other animals to find enough food, especially penguins during their nesting season. 

To make matters worse, krill and their predators are also in the firing line of the climate crisis. The Antarctic Peninsula is one of the fastest heating places on the planet. Sea ice is retreating, upsetting the life cycle of krill that depend on the ice. 

Proposals to protect more of the seas around the West Antarctic Peninsula and restrict where fishing can happen are being met with strong opposition from nations with major krill fishing interests. There are many other examples where vested interests and powerful lobbies are blocking progressive changes to the way people use the ocean.

Lionfish - King of the Reef.

In chapter ten you discuss the idea of futuristic, ocean floating cities in the Maldives. Do you think highly engineered solutions such as these have a place in a sustainable future? And how realistic do you think these innovative adaptations are as a long-term solution?

It’s only going to be rich nations that can afford expensive, engineered solutions at a large enough scale to be significant. Perhaps there are people in the Maldives who will be able to afford this, but I’m guessing not an average fishing family whose island homes are disappearing beneath the waves. The situation in the Maldives is grim and it’s hard to know what to do in low-lying, island nations that have so little time, so I understand why people are exploring ideas of floating cities and other extreme measures. 

Elsewhere, more realistic and frankly exciting solutions involve working with nature, not against it. Wetland habitats, like salt marshes and mangrove forests, are excellent at protecting against flooding and storms, and they bring heaps of other benefits too, from carbon sequestration to supporting local fisheries. 

A priority for living with the future ocean is to protect and nurture existing wetlands, especially those near big cities, and to find smart ways of weaving those green solutions into more conventional approaches to protecting coastlines.

Nassau Grouper Spawning Aggregation.

This book is a realistic, yet hopeful exploration of the future of our marine environment. Where do you think we should focus our attention over the next ten years to secure a better future for our oceans? 

There are a few key things that I think need attention in the ocean in the years ahead. It will be critical to turn off the tap of plastics entering the ocean. To do that, plastic production needs to be limited globally. Currently, the amount being made annually is skyrocketing, and recycling rates have stagnated at around 10%. A global treaty on plastics is being negotiated at the United Nations which could pave the way to turning around the plastics juggernaut. 

There needs to be a cultural shift away from treating the ocean as a resource to exploit and squeeze profit from. A new mindset is beginning to take hold embracing an alternative view, one of cultivation and investment. People are producing low-impact, ethical seafood, for instance growing shellfish and seaweed. Governments need to support initiatives like these, instead of propping up damaging industrial fisheries. The ocean has the capacity to provide sustainable food for millions of people, especially in food-insecure nations who have no alternatives and depend most on the seas, but not if damaging industrial fishing continues to dominate. 

New ways to recklessly exploit the ocean need to be stopped before they start, in particular deep-sea mining. Mining corporations want to extract metal-rich rocks from the seabed many miles beneath the waves, in the process destroying vital deep-sea habitats and species, potentially causing widespread pollution and disrupting the health of the ocean. 

The argument for deep-sea mining is that this would be a better way to provide materials for a green economy, in particular to build electric car batteries. For many reasons, this logic is deeply flawed. For one thing, the EV market is fast moving, and companies are constantly inventing new technologies in the race to build lighter, faster-charging batteries. Increasingly, the types of metals that could come from the deep, such as cobalt and lithium, are likely to be replaced by more readily available and less problematic materials. 

There’s growing pushback from civil society, governments, indigenous groups, scientists and industry leaders who agree that deep-sea mining is not vital for green economies and would permanently harm the ocean.

Birds diving into the sea to catch fish.

What’s next for you? Do you have any current projects that you would like to share with us?

A few years ago I began writing books for younger readers and it’s become a part of my work that I treasure. I have a lot of fun telling stories about the seas and sea life to younger audiences, and I love collaborating with super talented artists who make such incredibly beautiful books. So, I have several more books for little ones in the pipeline. 

There are also some spin offs from the books I’ve already written. When I set out on my career as a marine biologist, I never imagined one day I would have my own jigsaws! 

What the Wild Sea Can Be book cover showing an artists drawing of the ocean, sea and rocks.

 What the Wild Sea Can Be is available to order from our online bookstore.

Wilder Sensing: An Interview with Geoff Carss

Wilder Sensing, founded in 2021, is bringing innovative techniques to conservation, providing additional insights into biodiversity. This promising tech start-up featured on Springwatch this Wednesday (12th June), showcasing the applications of this innovation. We had the opportunity to chat with Geoff Carss, CEO of Wilder Sensing, on the organisation, its role in conservation and the future of technology in the field.

Can you share with us why Wilder Sensing was founded and what the company is involved in? 

Wilder Sensing was founded to ensure that anyone can collect high-quality, long-term biodiversity data. There are many different ways of doing this, but we focus on sound. By recording 24/7 for weeks, or even months, you can build up a very rich picture of what is present in an environment. The technology we use is low-cost with limited bias, and it is easy to use, even for non-professionals. It’s not perfect, especially because we are focusing on birds at the moment. Not all birds make much noise – some make very subtle noises which we can’t pick up – but for most species it works well. 

Can you tell us about the capabilities of Wilder Sensing technology and the insights that it can provide for a given environment?

We work with our customers to agree on survey patterns and how many recorders should be deployed on each site. The customer uploads their audio files to our website, and once they have arrived, we automatically process them using machine learning. It takes us around 20 seconds to process an hour-long file, and we can process many in parallel. During this, the technology checks every three seconds to see if a sound has been detected – every sound gets a species match, and a probability is assigned. So, for instance, the technology will be 92% certain that it has detected a Robin. Through this, we can give a species richness assessment, which is a species list at the moment. Our technology is currently unable to tell us how many individuals there are in a given space – there could be one very noisy bird, or ten very quiet ones.   

However, bioacoustic surveying technology does not remove the need for ground truthing. It is still important to get the baseline. Ecologists will find species that we don’t pick up. And the converse is true as well. We can find 20-30% more species when combining acoustic and traditional surveys. We are also working on other approaches for the future, like triangulation, which could identify exactly where a sound is coming from. 

Over 45,000 records were species-matched in the Peruvian Amazon. Image by Wilder Sensing.Can you tell us about the current projects that you are involved in and the role that bioacoustics played in conservation?  

We’re involved with a whole raft of different projects. We are working with environmental consultancies, Wildlife Trusts and NGO’s using acoustic technology for long-term surveying. Wendling Beck in Norfolk is a site that we have been working on for around 18 months. We realised that Skylarks are using one small part of the site, but you don’t see this until you look at the data – when you are just walking around, you don’t make that connection. If you look at some species, you might think that you have a ubiquitous habitat, but when you start looking at the distribution of birds and their calls, you may find that there are many times more calls in one part of the site. If you were to redevelop an area, you would probably lose some species altogether, but going into a development project, knowing that’s a likely ecological consequence, is really important and that is why acoustic technology is so valuable. 

What is the future for AI in conservation? Where do you think its applications could take us over the coming years??

I think it has a lot to contribute. To get good, accurate data you need highly skilled ecologists, people that really understand bird sound – it takes years to build those skills. I think the role will change so that ecologists will get more involved in survey design and interpreting the data to understand the consequences of a project. It becomes much more evidence-based and more quantitative. We have some customers who deploy up to 20 recorders, and you can get a quarter of a million acoustic records on each device. With that amount of data, you can start to ask different questions and we can see all kinds of behaviours that we couldn’t see before.   

In the South-west, some farmland was purchased to develop into allotments and after digging, they found that Skylarks were nesting on-site. Biodiversity Net Gain (BNG) does not look at species, so a habitat survey would not record Skylarks in the area. If acoustic recorders had been deployed on site, ecologists would know they were present – so well-rounded data will also help developers plan better, mitigating issues from the onset of construction. The BNG survey was designed to be consistent and relatively easy to use, and species surveys could prove to be more difficult because of inconsistencies and methodologies etc. With AI we can move to a new level of understanding. If you just stick the recorder out, it is consistent in how it works and removes bias.

Over 4,000 calls were detected from Meadow Pipits at Wendling Beck. Image by Kev Chapman via Flickr.

For those interested in bioacoustics, it is worth noting that you will be holding webinars from July. What can we expect from these sessions?  

We have three sessions lined up. The first one is on 7th July and is about measuring nature using sound. It’ll dig into both how the technology works and how it compares against other methods, and hopefully we’ll have an open discussion around its strengths and weaknesses. The session is intended for people who are interested in the subject, and we will go through some examples. 

This will be followed by two in the autumn, which are more technical and are perhaps more suited to professional ecologists. These sessions will be touching on some of the technology behind Wilder Sensing and some of the ways it should and shouldn’t be used.

What is Wilder Sensing hoping to achieve over the next decade?  

I am hoping to move onto other taxa, the obvious ones being insects and bats. We would also like to look at triangulation as well – if we can triangulate how birds and bats are using a landscape, we can use this to help inform better environmental management. I think this data will be used with other environmental data in the future. People doing nature restoration or project planning need to understand the water quality, air quality, the climate etc. to get a better environmental outcome. And even forward-looking companies, we can look at their supply chain as well.

An acoustic sensor deployed at Honeygar Farm. Image by Wilder Sensing.

Increasingly the media are reporting on the quietening of British soundscapes, a symptom of the biodiversity and climate crisis we are facing. How do you think Wilder Sensing will adapt to an increasingly quiet environment? Will technology need to adapt to keep up?  

Wilder Sensing technology will quantify exactly what is happening in the biodiversity crisis. I have a copy of the iconic Silent Spring by Rachel Carson, which was published 60 years ago, and we haven’t learned from that. I think this type of technology will hold a mirror up to people to show exactly what is going on. I would love to get a good quality recording from 50 years ago, maybe two or three hours of dawn chorus in woodland, and go back to the same time of year in the same place (assuming it still exists) and compare it. Showing exactly that this is the difference in diversity.   

To find out more about the innovative work by Wilder Sensing, their blog features some interesting case studies on the applications of their technology and they are also active on LinkedIn. For more information on Wilder Sensing and their product, email info@wildersensing.com.