Climate Challenges: 5. Extreme Weather Events

In the lead up to the 26th UN Climate Change Conference of the Parties (COP26) in November of last year, as well as the months that have followed, we have been writing a series of articles looking at some of the toughest global climate crisis challenges that we are currently facing. This article looks at the increase in frequency and intensity of extreme weather events, their impacts, and how they are affected by climate change.

Storm damage from Storm Emma at Holyhead marina, Wales in 2018 by Hefin Owen via Flickr
What are extreme weather events and why do they occur?

Extreme weather events can be split into four categories: geophysical (i.e. tsunami), meteorological (i.e. storms, tornadoes), hydrological (i.e. floods) and climatological events (i.e. extreme temperatures, drought, wildfires). They are usually defined as unusual, unexpected, unseasonal or severe weather. This extreme weather often has a significant impact on us and the environment, causing damage, loss of livelihood and even loss of life.

There is debate as to how much climate change is responsible for our changing weather patterns. There are a variety of causes for extreme weather, including tectonic plate shifts, changes in air pressure or movement, ocean temperatures, atmospheric moisture content, the reflection rate of solar radiation and even the tilt and orbit of the Earth. These are natural variations that cause naturally occurring extreme weather, therefore, the occurrence or even intensity of these events cannot only be blamed on climate change.

How does climate change affect extreme weather events?

Many studies on weather events around the world have connected the increase in intensity and frequency of extreme heat, drought and rainfall to human influence. The picture is more complex for tropical storms (hurricanes, typhoons and cyclones). It is expected that these events will become more intense due to human influences, such as sea-level rise and anthropogenic warming. It is thought that these tropical storms will occur less frequently, however, although there is no consensus.

The increase in atmospheric carbon dioxide and greenhouse gases due to human activities is causing an increase in average global temperatures. This leads to other impacts, such as glacial and sea ice melting, which is affecting the global ocean circulation. This circulation acts as a conveyor belt, transporting cold water from the poles to the equator and warmer water and precipitation from the tropics back to the poles. A disrupted circulation, for instance due to the weakening of the Gulf Stream, could cause extreme weather events such as far colder winters in western Europe.

Actions such as deforestation can also cause changes in extreme weather events, as removing large sections of forest can impact the movement of water in the atmosphere. This can change precipitation patterns both locally and globally – if occurring on a large enough scale. Increased precipitation can cause flooding, whereas a decrease in rainfall can lead to drought. For more information, check out our previous Climate Challenges article on the local and global implications of deforestation and its relation to climate change.

Increasing land temperatures may push ecosystems to the brink of collapse. High land surface temperatures in Europe on 25th July 2019 by European Space Agency via Flickr
What are the impacts of extreme weather events?

The damage from extreme weather events to both humans and the environment can be catastrophic. Beyond the direct loss of life, there is an impact on livelihoods, homes and other buildings, roads and infrastructure. The costs of these events can be incredibly high, and it can take years or even decades for areas and countries to recover from the worst of these events. This will only get worse as they become more intense and more frequent, as there will be more damage and less time to recover between events. During February of this year, a series of successive storms, including Dudley, Eunice and Franklin, brought widespread damage, leaving hundreds of thousands without power and millions of pounds in repair and clean-up costs.

Many cities are not built to withstand weather conditions outside of the norm for the area and, therefore, may not have the infrastructure in place to deal with certain extreme weather events. This was evident during the 2021 snowstorm in Texas, United States, where the state’s power supply was not equipped to deal with the record low temperatures. This led to many power outages for over 5 million people, with the total loss of life reported as 210 people.

Environmentally, habitats can be impacted. They can be altered or even destroyed, leading to the extinction of many species that are unable to rapidly adapt, particularly if their distribution is already restricted. It is usually generalist, resilient species that are able to adapt and survive this level of disturbance, therefore specialist species are more likely to become extinct. After a major disturbance event, ecological succession can take place and species recolonise the area. This phenomenon begins with pioneer species, such as plants, lichens or fungi, and the animals that rely on them, before developing in complexity to a stable ‘climax community’. This habitat can be vastly different from the original, depending on the species that survived the original event and those nearby that can recolonise the area. The climax community can also take decades or even centuries to develop, therefore the biodiversity of the area may be reduced or altered for an extended period of time.

Successive storms during winter in late 2015 to early 2016 caused widespread flooding across Great Britain and Ireland. Image by Andrew Gustar via Flickr
What can be done?

Similarly to many of the climate challenges in this series, the solution relies on limiting the rise of global average temperatures. This can be achieved through a combination of methods, many of which were discussed at the COP26 in November 2021. Some of these methods, such as switching to renewable energies and moving towards more sustainable agriculture, are already underway in the UK.

More work needs to be done, however, as even the 1.5°C limit in the rise in global average temperature that the Paris Agreement is aiming for could still have a huge impact on the climate. At 1.5°C, 14% of the world’s population will be exposed to severe heatwaves at least every five years. Rainfall will become more erratic, leading to more flooding, droughts, and reduced water availability. Extreme weather events will be more likely to occur and at a higher intensity.

While the impacts of a 1.5°C rise are thought to be less than those of a 2°C rise, they will still be devastating to many countries and people. And so it is key that countries begin to build resilience against extreme weather, support those most vulnerable and begin to protect and restore habitats. Countries were asked to produce an ‘adaptation communication’ for COP26, outlining what they are currently doing and their future plans to adapt to the impacts of climate change.

Changes in wind patterns due to climate change could increase the amount of extreme snow that parts of Britain receive. Snowfall in Riverside, Cardiff, South Wales by Jeremy Segrott via Flickr
COP26 pledges

Following COP26, 90% of the world’s economy is now striving for net zero emissions, with many aiming for 2050; over 100 world leaders signed both The Glasgow Leader’s Declaration on Forest and Land Use and the Global Methane Pledge; and more than 40 countries signed the Coal Pledge, which aims for nations to move away from coal power by the 2030s for major economies and 2040s for developing countries. In addition, multiple countries, companies, philanthropic foundations and international development banks pledged funding to move away from financing fossil fuels and towards renewable energies.

While there are a number of faults with some of these pledges, with criticism over the perceived lack of strict accountability, a peer-reviewed study has found that these new policies could help to keep global warming below 2°C. This will hopefully limit the impact of climate change on extreme weather events, but to keep within the target of 1.5°C, far more needs to be done. The IPCC announced that emissions would need to peak before 2025 and significantly decline by 2030. Read more about the outcomes of COP26 in our blog: Climate Challenges: COP26 Round Up.

Summary
  • Extreme weather events are unusual, unexpected, unseasonal or severe weather. They can cause massive damage and destruction to both us and the environment.
  • Due to climate change, many extreme weather events may become more frequent and more intense. This will cause more damage and allow less time to recover, potentially pushing both communities and ecosystems beyond the point they can survive.
  • The solutions rely on reducing the rise in global average temperatures by reducing the amount of greenhouse gases released into the atmosphere.
    Even at a rise of 1.5 degrees, the impact of extreme weather could increase. Therefore, a strategy of adaptation and protection for those most vulnerable is needed.
  • The policies and pledges signed at COP26 last year may be enough to keep global average temperatures below 2°C, but far more is needed to limit the rise to 1.5°C.
Useful resources:

The COP26 website page on their goal of adaptation: https://ukcop26.org/cop26-goals/adaptation/

NASA’s website on selected findings of the IPCC Special Report on Global Warming, highlighting the impacts of a 1.5°C versus 2°C rise. https://climate.nasa.gov/news/2865/a-degree-of-concern-why-global-temperatures-matter/

Our previous blog on Climate Challenges: What is COP26 and Why is it Important?, covering many of the impacts of an increase in global average temperatures above 2°C and the goals of the UK government.

 

Water Always Wins: Going with the Flow to Thrive in the Age of Droughts, Floods & Climate Change
Erica Gies
Available for pre-order | Hardback | £19.99

 

 

 

Drought, Flood, Fire: How Climate Change Contributes to Catastrophes
Chris Funk
Hardback | £19.99

 

 

 

 

Angry Weather: Heat Waves, Floods, Storms, and the New Science of Climate Change
Friederike Otto
Hardback | £18.99

 

 

 

 

All prices correct at the time of this article’s publication.

Author Interview with Thomas Halliday: Otherlands

Otherlands is the exquisite portrayal of the last 500 million years of life on Earth. Palaeobiologist Thomas Halliday takes readers on an exhilarating journey into deep time, interweaving science and creative writing to bring to life the unimaginably distant worlds of Earth’s past. Each chapter is an immersive voyage into a series of ancient landscapes, throwing up mysterious creatures and the unusual landscapes they inhabit.

Thomas Halliday has kindly taken the time to answer a few questions for us below.


Could you begin by explaining what you mean by ‘otherlands’? How did your fascination with these ‘otherlands’ begin and what drew you to write about this?

The word ‘otherlands’ came about in trying to come up with a title that reflected some level of familiarity and strangeness. It falls somewhere between the idea of something being ‘otherworldly’, but also recalls ‘motherland’ – a safe, familiar home. I think all palaeobiologists, whatever subdiscipline they are part of, have the shared goal of understanding how life used to be. Biomechanists might concentrate on the engineering of a skeleton to understand the behaviours it would have been capable of, and phylogeneticists are interested in how living things are related and changed over time, but all of it adds up into a picture of past life. I’ve always been more interested in big picture, ecological questions rather than the minutiae of anatomy – as important as anatomical knowledge is – and so writing through an ecological lens made most sense to me. In essence, it’s just putting down on paper what we as a community have discovered about life at different points, which is a useful exercise in bringing together science from groups who don’t necessarily read one anothers’ papers. I can’t visit these places except through some creative process – whether that’s a painting, an animation, or text. And I can’t paint or animate.

It is a great feat of work to bring Earth’s deep past to life and to render the unseeable things seeable through prose. How did you approach such an immense task from not only a literary perspective, but a philosophical and scientific perspective too?

Every site in the book has some kind of layout in my mind. It may be known to a fairly high degree of accuracy scientifically – the extent of the playa lake in Moradi, just over 250 million years ago in what is now Niger – is sketched out in papers on that site, so we can get an estimate of how big it was, and which way the water was flowing from. In others, our knowledge is a bit more generic but I have a mental map of where the different beats take place. The line of the story in each place moves through that space, which means that I can be consistent in timing, sights and so on. I think this internal consistency of a place is essential to making it seem immersive. Most of the actual visual descriptions of the animals and plants I use, though in my own words, are no more detailed or evocative than those of other writers, so if I have managed to create a better sense of things being ‘seeable’, as you suggest, then I think that it is everything else around it that make the scene believable. If the scene has been describing the smell of a limestone cave, that colours the subsequent description of the next animal, because mentally you begin to frame it as seen while emerging into the light. We experience an environment through all our senses, and so appealing to those other aspects of reality brings out the realness of an organism.

Credit: Penguin Random House

One of the things I most appreciated about Otherlands was how you focus on landscapes, the settings that are necessary for life to evolve, versus our society’s sensationalised image of the prehistoric world that typically conjures up images of monstrous creatures. What is it that draws us to the dinosaurs compared to the often forgotten plants, fungi, invertebrates and other species?

I blame Gideon Mantell. Well, not really, but the early pioneers of popular geology at the end of the 18th and beginning of the 19th century drew crowds because of the enormous creatures they could put on display. The first fossil animals to be displayed in sensationalist shows were mastodons – relatives of elephants – and giant ground sloths. You have to remember that this is a pre-Darwinian time, when extinction has only recently been recognised, and when the timescale of the age of the Earth is still very much debated. They drew in the crowds with claims of antediluvian monsters from some barbaric era, and I think a lot of the popular depictions of the past have remained since then. If you think of the most influential European and American artistic works featuring palaeontology over the last – Jules Verne’s Journey to the Centre of the Earth, Arthur Conan Doyle’s The Lost World, Disney’s Fantasia, all the way through the Ray Harryhausen B-movies to Michael Crichton’s Jurassic Park, there’s a common thread of violence and peril, which is undoubtedly a crowd-pleasing approach but doesn’t really reflect what biology is typically like.

That doesn’t quite explain why many fossil mammals or crocodilians, for instance, are poorly known by the public. Dinosaurs do have the advantage of being typically very large compared with the biggest land animals of today – and indeed the recent past – so if you’re going into a museum it’s a lot harder to miss the big Diplodocus than the display of fossil horsetails. There is something awe-inspiring in size, but I hope that people can take the time here to recognise the wonder in the very small things that are going around. I do of course have dinosaurs in the book, but because they have been covered so extensively, I didn’t want to deal with many of the clichés. There’s a dinosaur hunting for food, sure, but it ends in failure. The big tyrannosaur has a drink and scratches off some dandruff against a tree. There’s more to dinosaurs than violence.

I was struck by the level of detail that is revealed from the fossil record, to the point that we can know the presence of different types of insects based on the distinct ways in which they damage leaves. As you collated such an array of research for the book, were there any particular findings that captivated your imagination the most?

One piece of information that I really enjoyed learning about, just because of the implications throughout, was one that I picked up at a conference talk (and which has since been peer reviewed and published). Oviraptorosaurs are a group of dinosaurs that have been associated with nests for a long time. The name means ‘egg thief reptiles’ because it was initially assumed that they were eating the eggs, but more and more finds have accrued, including of parents sitting on the nests at the time of burial, that show that these are their own nests that they are caring for. We can reconstruct how the nests were built based on the arrangement of eggs and the nest mound – a ring of eggs was laid, and then buried, and another ring later added. But what is wholly remarkable is that we can chemically analyse the eggshells even now, and identify different isotopic ratios of calcium in each layer. The isotopic pattern is a sort of chemical signature that is tied to the individual mother that provided the raw material for the eggshell. What this means is that each nest contains the eggs of more than one mother. There are a couple of possible explanations for this, but the best modern example of communal nesting like this is in ostriches, where a single male builds and guards each nest, and several females lay eggs in the same nest. In ostriches, the males then rear the chicks once hatched – I don’t go so far as to claim this for oviraptorosaurs, as this could only be speculation, but I think the best examples of fossil record detail are those where a preserved detail of chemistry opens up a whole trove of behavioural implication.

Thomas Halliday. Credit: Desiree Adams, Penguin Random House

Scientist Robert H. Cowie writes: “Humans are the only species capable of manipulating the biosphere on a large scale. We are not just another species evolving in the face of external influences. In contrast, we are the only species that has conscious choice regarding our future and that of Earth’s biodiversity.” Speaking to this, how can our current epoch defined by destructive human influence be compared to these past worlds, and what lessons might be learned?

Our epoch is known as the Holocene, and makes up the last 11,700 years of geological time. Human environmental influence extends past the beginning of the Holocene, but recently it has been both accelerating and fundamentally changing in type. With deep ocean dredging and drilling, we are disturbing ecosystems that had until now never encountered us, plastic is pervading every part of the biosphere, we are altering the atmosphere globally, and our consumption of resources has boomed. When we look to the past, we find a few occasions when some similar traits can be observed. New chemicals in an environment – from oxygen in the single-celled earth of the Proterozoic to wood in the Carboniferous – have disturbed the balance of the world, but ultimately incorporated in fundamental processes. The Great Oxygenation Event is widely suggested to have caused a turnover in microbial communities as those oxygen-intolerant species retreated to environments this new toxic gas could not reach. The delay between the origin of wood and the development of lignin-digesting bacteria has been suggested as a reason for the preponderance of peat forming swamps in the Carboniferous, although this is disputed. Whatever the reason, the laying down of peat – and then coal – changed the atmosphere radically, which led to greater aridity worldwide, ultimately destroying the suitable environment for the very trees that had caused that change. But the biggest effect we are having is that of disturbance, and for that we have to look to mass extinction events for parallels. Earth has existed in all kinds of climatic states over its history, but mass extinctions have occurred during times of sudden transition. From the end-Ordovician, when glaciers rapidly advanced and retreated from the poles, to the end-Permian, when unfathomably large volcanic eruptions deoxygenated the oceans and threw greenhouse gases into the atmosphere, to the end-Cretaceous, when the aftermath of a meteorite impact darkened the skies for years, rapid change is typically bad. Although life eventually returns, it can take millions of years, and the species that thrive afterwards are rarely those that had thrived before.

Our effects are often extreme and rapid, and part of the problem is that they are done with a short-term mindset. Some human modifications – such as the pre-Columbian cultivation of the Amazon rainforest, the development of clam gardens, or well-managed meadowlands – have increased diversity locally, and are sustainable in the long term. We mustn’t fall into the trap of thinking that humans can only be destructive, or that we are separate from the ecosystems we live in. But, looking to the past, it is clear what the consequence of destructive behaviours is. This is the Earth we live in, and we are part of this world, but worlds can change in a moment.

This book is a timely reminder of the impermanence of life on Earth, evocatively revealing the fragility of our existence. As a researcher of the past, what do you see for our future?

People often assume that I might answer this question in terms of biology of life after humanity, or of the evolutionary direction humans are heading in. Although speculation can be fun, I don’t think that’s a useful way of thinking, because as Earth history shows us, the broad strokes of biology will remain the same. There will always be the same patterns of energy flow through ecosystems, and amazing adaptations to environments so complex that to form any predictions of the truly long term is futile. But we must think ahead to our immediate future. Nobody is suggesting that humankind will become extinct any time soon – we are too generalist, too adaptable to any environment to suffer that kind of loss. But that doesn’t mean that people, societies, cultures will not suffer under the environmental change that is already underway. And of course, portraying climate change as something that is future is itself untrue; we have been feeling the effects of climate change for decades already, especially those of us in low-lying island nations, those prone to storms, or dependent on seasonal ice. The effects will continue to accrue and to spread, but I remain optimistic that we will do what needs to be done – cease extraction of fossil fuels, move to a less all-consuming society, and support less wealthy countries in improving quality of life through renewable energy rather than repeat the errors we have repeatedly made. I am optimistic, and hopeful, but it is not something that will just happen. I see hard work, and that it will be entirely worth it.


Otherlands: A World in the Making
Hardback | £19.99 

 

 

This Week in Biodiversity News – 6th April 2022

Researchers have published a new study providing the first detailed description of fungi on the Polynesian island of Mo’orea. More than 200 macrofungi are included in the collection, many of which could be new to science. The Island’s hot, humid and remote conditions, coupled with its jagged peaks, have limited the documentation of the region’s life forms until now. A total of 553 fungal specimens were gathered, with DNA sequencing completed for 433 of them.

Online wildlife trade in Myanmar is on the rise. A WWF report found that the enforcement of bans on the wildlife trade has weakened following a 2021 military takeover, with dealings increasing by 74% from 2020 to 2021. Over 173 species were traded, 54 of which are threatened with extinction. Future studies are planned to better understand the role Myanmar has in the global trade in endangered species.

There is hope for the red-tailed phascogale recovery program after a catastrophic population decline following the arrival of cats and foxes to Australia. Now found in just 1% of their original range, these small marsupials were once abundant across much of the country. Fourteen captive-bred individuals were released in the Mallee Cliffs National Park last week, joining 60 others released last year. It’s hoped that the refuge could eventually boost the national population by around 20%.

A critically endangered Sumatran rhino was born in Indonesia, the first ever in the Sumatran Rhino Sanctuary in Way Kambas National Park. There are estimated to be fewer than 80 Sumatran rhinos left in the wild, with only nine in captivity.  This rhino calf is also a third-generation captive-born Sumatran rhino, which is the first ever recorded for this species, representing a hope for the future of this species.

A new use of genomic techniques is aiming to expand information on sharks’ recent history to help researchers assess how they may respond to climate change and pressures related to the fishing industry. In a study focusing on shortfin mako sharks (Isurus oxyrinchus), researchers collected more than 1,000 samples of jaws and vertebrae from museums, national fishery institutes and personal collections, spanning three centuries. Around half underwent genomic analysis, and the results showed that their genetic diversity has not reduced significantly in recent years, potentially due to high levels of connectivity between different populations allowing for continued gene flow. This is potentially a cause for optimism about the long term prospects of mako sharks.

South West Marine Ecosystems Webinar Programme 2022: The State of the South West’s Seas

The South West Marine Ecosystem conference series has been running for more than a decade, bringing together those involved in marine conservation, scientists and managers to share information to improve understanding, future monitoring and management.

This series of webinars on the state of the south-west’s seas presented a number of topics, including cetaceans, climate change, seals, south-west fisheries in 2021, marine and coastal birds, fish and turtles, oceanography and plankton, seashore and seabed, water quality and marine protected areas. These webinars give a well-rounded update on the south-west marine ecosystem, its processes, challenges and successes. We were very pleased to be able to support and attend this series of webinars. Below is a summary of some of the engaging and thought-provoking talks from what was an insightful and educational programme.

Seals:

The Cornwall Seal Group Research Trust (CSGRT), who work to survey, record and process data for the identification and monitoring of seals within the south-west, discussed the current state of the grey and common (harbour) seal populations in the region. The webinar highlighted the threats seals face in south-west waters, including entangling and disturbances. There was a large number of disturbances seen in 2021, with almost 1,500 seals affected. These disturbances can be caused by a number of human activities, including noisy walkers, dogs, beachgoers, kayaks, SUPs, small watercraft, commercial fishing boats and local trip boats. The impact of instances such as entanglement and disturbances are cumulative, having severe consequences on the survivability of seals.

Grey seal by Jo Garbutt via Flickr

Marine impact deniers, apathy, misconceptions and the general prioritisation of humans over wildlife seriously impact the conservation efforts for seals in the UK, but CSGRT are working to counteract this within the south west. Through conservation activities, censuses and public awareness campaigns, the CSGRT has managed to promote best practices amongst a number of companies to reduce their chances of causing disturbances. They have also been working with Natural England and National Trust to install trail cameras, checked and monitored by a local volunteer, to record the response of seals to the presence of people.

Common seal by Joe Hayhurst via Flickr
Marine and Coastal Birds:

The south-west marine ecosystem is home to a vast number of seabirds. Regionally, there is also a mixed picture of the health of seabird populations, with population recovery and decline in different species across Lundy, the Isles of Scilly, Cornwall, Devon and Dorset.

In 2021, RSPB staff and volunteers reassessed the abundance and distribution of cliff-nesting seabird populations on Lundy, forty years after the initial census in 1981. They found over 27,000 breeding seabirds on the island, mainly auks and Manx shearwaters. In 2000, the seabird population was approximately 6,000, but since the removal of rats in 2004 populations have been able to make an amazing recovery. Historically, however, the area supported around 80,000 birds, suggesting that further conservation efforts and surveys are needed.

Razorbill with a chick by Ianpreston via Flickr

In the Isles of Scilly, rat removal on certain islands has also contributed to an increase in some seabird numbers and breeding success, such as for the Manx shearwater. The number of breeding pairs of kittiwakes, however, has been declining over the last few decades, and last year, for the first time in living memory, there were no kittiwakes nesting on the Isles of Scilly.

In Cornwall, Devon and Dorset, certain seabirds are also declining, including a steep decline in the main wintering population of black-necked grebes in Carrick Roads, Cornwall. There is no obvious reason for this decline, as there are fewer disturbances and better management of the area.  In Exmouth, Devon, occupied kittiwake nests have been increasing since 2000, but their breeding success has been reducing since 2018, from an average of 1.05 to 0.43 overall across all 3 plots monitored. In Dorset, several species are struggling, even with close management and conservation. On Chesil Beach, only 3 little tern chicks successfully fledged from 48 nests, 155 eggs and 102 chicks.

Little tern chicks by Andy Morffew via Flickr

In the near future, there are several key areas that need addressing to help seabird conservation efforts in the south west. More standardised recording is needed in key estuarine sites, to ensure that there is proper data on populations such as the black-necked grebes. Additionally, there needs to be closer monitoring and increased take-up of nest recording for widespread seabirds, as well as management of possible tourism disturbance.

Seashore and Seabed:

Using information harvested from observations on social media and other sources, Keith Hiscock of the Marine Biological Association presented the state of the seashore and seabed of south-west seas in 2021. By comparing current sightings with previous records, such as the recording of Poecilochaetus serpens in 2021, where it was previously noted in 1902, the persistence of species and biodiversity within these areas can be analysed. They were able to see the gains and losses of species on the seashore and seabed, for example lower numbers of crawfish (Palinurus elephas) in areas where significant numbers had been seen in the last few years, and increases in abundance and extent of other species, including Zostera noltii and Z. marina.

Pacific oyster by Tim Binns via Flickr

They were also able to note the presence of new species within areas of the south west, including the Mediterranean feather duster worm (Sabella spallanzanii), and the increasing abundance and extent of non-native species, such as the Pacific oyster (Magallana gigas). The number of non-native species within south west waters has continued to grow, with the range and abundance of some species already present also increasing. The very slight increase in the presence of warm water species suggests that ocean warming is having an effect, but it is not having a marked impact on biota composition. Overall, this webinar called for a better process for the systematic recording of events and change in south-west seas.

Our thoughts

This year’s webinar programme was an enlightening insight into the ecosystem of the south west, as well as the ongoing conservation efforts undertaken by multiple different groups and volunteers across the region. For those who were unable to attend the live lectures this year, recordings of each are available on the South West Marine Ecosystems youtube channel. Further information about conferences can be found on their website, along with an archive of their previous conferences.

The NHBS Introduction to Habitats: Grassland

Peter O’Connor aka anemoneprojectors via Flickr

Grassland habitats are areas of vegetation dominated by grasses. Similarly to heathland, grassland can be divided into lowland and upland (above 200m). The type of sediment can also be used to classify grassland habitats, such as calcareous (lime-rich soils), acidic (sands, gravels and siliceous rocks) and neutral (clay and loam soils). They are often maintained by human intervention, through mowing, fertilising, drainage, burning or chemical treatments, as well as livestock grazing. They can also be maintained by natural processes such as grazing or browsing, or due to exposed conditions at the coast or at high altitudes where shrub and tree growth is limited.

Grassland can also be separated into unimproved, semi-improved and improved. This refers to the amount of agricultural interference in the habitat. Improved grasslands have undergone high modification or intensive agriculture, and thus typically have fewer species with a limited variety of grasses and flowering plants. (white clover, perennial ryegrass and other agricultural species usually cover more than 50% of improved grasslands). These habitats are covered more in-depth in another blog: The NHBS Introduction to Habitats: Farmland.

Semi-improved grassland is a transition category between improved and unimproved grasslands that have undergone some modification through the use of, for example, fertilisers, herbicides and grazing. These habitats have a reduced range of plant species compared to unimproved grassland but a wider diversity than improved grassland.

Unimproved grassland, also termed species-rich, has not been artificially fertilised, ploughed or reseeded. Grassland habitats are considered to be species-rich if they have more than fifteen plant species per square metre, a wildflower and sedge cover of more than 30% (excluding creeping buttercup, white clover and invasive weed species), and less than 10% cover of white clover and perennial ryegrass. Species-rich grassland habitats not only support a large number of flora species but also many fauna species such as invertebrates and birds. They improve and maintain the health of soils, protect against soil erosion, sequester carbon and provide food for browsing and grazing species such as deer and livestock.

Other examples of grassland habitats include lowland meadows, upland hay meadows, montane grasslands, purple moor-grass and rush pasture, marshy grassland, wet grassland and calaminarian grassland.

What species can you find here?
Flora

The number and type of flora species found in grasslands depends on the type and health of the habitat. Unimproved, species-rich habitats can support a huge variety of grasses, wildflowers and other vegetation. They all provide food and shelter for the many different fauna species that can be found in grasslands.

Crested dog’s-tail (Cynosurus cristatus)

Peter O’Connor via Flickr

Grassland is dominated by grass cover and the species of grasses present can depend on factors such as soil type, altitude, level of agricultural improvement and maintenance routine. Crested dog’s-tail is found in many grassland habitats. It is a wiry, tufted grass that grows between 15–60 cm tall and is a traditional grazing grass. It is a common species that prefers lowland grassland and is the foodplant of many caterpillar species, such as the large skipper (Ochlodes sylvanus).

Quaking-grass (Briza media)

David Evans via Flickr

Another grass species is quaking-grass, with purple and green heart-shaped flower heads on delicate stems that appear to ‘quake’ or quiver in the breeze. Resembling miniature hops, this plant is also called totter grass, dithery dock, jiggle-joggles, earthquakes and toddling grass. The seeds of this species are a source of food for many bird species, such as yellowhammers and house sparrows.

Grasses are important foraging plants and their leaves and grain are eaten by a wide variety of species, such as small mammals, livestock, deer and many invertebrates. They also provide shelter and nesting materials, often used as the base or weaving material for many bird nests. Grasses can also help to stabilise the soil.

Cowslip (Primula veris)

Matt Brown via Flickr

There are thousands of wildflower species in grassland habitats, providing an important nectar and pollen source for many invertebrate species. Cowslip favours dry, calcareous grassland, but is also found in woodland, hedgerows and road verges. It flowers from April to May and its yellow, bell-shaped flowers are encased in a long, green tube-shaped calyx and grow in clusters. The flowers all face one side of the plant and have five petals, each with a small indent on the top edge. Cowslip is particularly important as it is an early food source for many pollinators.

Eyebright (Euphrasia sp.)

johndal via Flickr

Another example of a wildflower species found in grassland habitats is eyebright. There are multiple eyebright species, including many hybrids, and identification in the field is often difficult. They’re semi-parasitic, feeding on the nutrients of the roots of nearby grasses. This can help control the spread of more aggressive grass species, allowing other wildflowers to grow.

For more examples of wildflowers, check out our guide to UK wild flower identification.

Fungi

Fungi form an important part of grassland habitats, playing a vital role by breaking down organic matter in the soil and facilitating the cycling of nutrients. They also food for many different species, including insects, mammals, gastropods like slugs and snails, nematodes, bacteria and even other fungi.

Scarlet waxcap (Hygrocybe coccinea)

Stu’s Images via Flickr

Waxcaps are associated with unimproved grasslands that have a short sward and are nutrient-poor, moss-rich and long-established, and occur in both upland and lowland areas. Due to changes in agricultural practices, these habitats have been declining in Europe, and conservation efforts have been made to protect them. These waxcap grasslands are also home to other fungi species including agarics, clavarioid fungi and earthtongues.

Sometimes called the scarlet hood or righteous red waxy cap, the scarlet waxcap can be found across the Northern Hemisphere. They’re found in fields, open woodland, lawns and roadside but they prefer unimproved grassland, where no fertiliser, chemical treatment or ploughing has occurred.

White Spindles/Fairy Fingers (Clavaria fragilis)

Dr. Hans-Günter Wagner via Flickr

This species is an upright fungus consisting of tubular, unbranched basidiocarps (the fruiting body). They are white with browning at the tips and are very fragile, with smooth, soft and somewhat brittle flesh. They also occur in waxcap grassland and other old, unimproved grasslands.

Shaggy Inkcap (Coprinus comatus)

Mature: Lukas Large via Flickr (cropped). Immature: Simon via Flickr

This fungus, also known as lawyer’s wig, is very common in parklands, grasslands and lawns, with a tall, shaggy cap that begins white before turning browner and grey with age. The cap opens to a bell shape as the gills turn from white to pink and then black, dissolving from the base of the cap until it’s almost completely gone. This dissolving fruitbody breaks down into a black fluid that is full of fungal spores, aiding dispersal. This fluid was historically used as an ink substitute.

Fauna

Diverse grasslands can provide habitats for a wide variety of wildlife. There is a lot of cross over between grassland and farmland species, due to much agricultural land being improved grassland habitats. Grassland is home to several species of birds, such as ground-nesting species and birds of prey. They also support small mammals, reptiles and many grazing and browsing species, such as deer, rabbits and wild horses. They are also important habitats for a huge number of invertebrates, with wildflower-rich habitats supporting many pollinator species.

Common field grasshopper (Chorthippus brunneus)

Tim Worfolk via Flickr

This common and widespread species feeds on grasses and other plants. They prefer dry habitats and are found in grassland, heathland and agricultural areas, but tend to occur in higher densities in ungrazed areas. Many invertebrate species play important roles in grassland habitats, allowing air penetration and nutrient cycling in the soils and the breakdown of dead organic material. They are also prey for species such as birds, reptiles and some small mammals.

Marbled white (Melanargia galathea)

Topside: xulescu_g via Flickr
Underside: Peter Stenzel via Flickr

Butterflies are another group of invertebrates that are common in grassland habitats, particularly species-rich grasslands, due to the presence of many food plants and shelter provided by scattered scrub. Although some species can be found in multiple different grassland types, the habitat can sometimes be characterised by the presence of different butterfly and moth assemblages.

The marbled white is found in unimproved grassland with tall sward, as well as gardens, road verges and railway embankments, and is widespread in southern Britain. Its range has been expanding northwards and eastwards. Its caterpillars rely on red fescue (Festuca rubra) as a foodplant, as well as sheep’s fescue (F. ovina), Yorkshire-fog (Holcus lanatus) and tor-grass (Brachypodium pinnatum).

Bloody-nosed Beetle (Timarcha tenebricosa)

Stoutcob via Flickr

Beetles often make up a large percentage of invertebrate assemblages in grassland habitats. They play many important roles in grassland ecosystems, as plant feeders, prey, predators, parasites and scavengers, recycling nutrients from organic matter both into the soil and through the food chain. Bloody nosed beetles are black, flightless beetles that are often found in grasslands and coastal areas, particularly in the south and central UK. Their common name comes from their peculiar defence mechanism. They secrete foul-tasting, bright red hemolymph (a fluid analogous to blood) from their mouth when threatened.

Skylark (Alauda arvensis)

caroline legg via Flickr

Many birds nest in grassland habitats, such as vulnerable wading birds (lapwing and curlew) and the skylark. A small bird, the skylark has a streaky brown plumage with a small crest. It is listed on the Birds of Conservation Concern 4 (BoCC 4) red list due to its recent population declines. These declines have been associated with agricultural intensification and the resultant reduction of grassland availability and suitability of farmland habitats for breeding and foraging. Birds such as the skylark use grassland as foraging grounds, feeding on seeds and insects. They are prey for other species such as birds of prey and foxes.

Kestrel (Falco tinnunculus)

Ron Knight via Flickr

Several predator species utilise grassland habitats, namely foxes, weasels, stoats and some birds of prey. A number of birds of prey use grasslands to hunt for small mammals and other prey species. Kestrels predate almost exclusively on small mammals, such as voles, shrews and mice. They also occasionally prey on birds, particularly fledglings during the early weeks of summer, as well as bats, lizards and some invertebrates.

Roe Deer (Capreolus capreolus)

Bengt Nyman via Flickr

The UK has six deer species, although only two are native: red and roe deer. Fallow deer are thought to have been introduced by the Normans and the three other species, Reeves’ muntjac, Chinese water deer and sika, were introduced in the 19th and early 20th centuries. For more information on these species, check out our guide to UK deer identification.

Roe deer are small deer, with a reddish-brown colour during summer and a paler or black colouration in winter. They have a large white rump that becomes less obvious during the winter. Many grassland habitats are maintained by grazing and browsing, where species such as deer feed on the shoots of trees and scrub species that would otherwise encroach on the habitat. In many countries, deer populations are controlled by predators such as wolves, to help reduce the extent of their impact on grasslands. Other habitats are then able to develop, allowing the expansion of woodland, shrubland and heathland. The UK does not have any large predators anymore, however, therefore deer populations are managed through culling to prevent overgrazing.

For more information on other species that may occur in grassland habitats, including reptiles, moths, bumblebees and other mammal and bird species that may occur in grassland habitats, check out some of our other guides to UK species identification.

Threats

Species-rich grasslands are highly threatened habitats, as most grassland in the UK is improved or semi-improved. The main threats to grassland habitats are agricultural improvement and development. Ploughing, re-sowing, intensive grazing or mowing and heavy use of fertilisers can fundamentally change soil type and quality. This, along with clearing for development, reduces the quality and area of habitat, which would impact the number and range of flora and fauna they can support. Heavy recreational use can also impact grasslands, particularly fragile vegetation.

Another threat is encroachment from scrub and trees because of abandonment, incorrect or lax maintenance or intentional efforts to increase woodland cover. Woodland is often prioritised over grassland (that is not used for agriculture), as it is seen as more environmentally important, particularly in relation to carbon sequestration. The consequent fragmentation of grasslands is a threat in itself, as habitat patches that are too small or isolated may no longer be able to support viable populations of some species.

Areas of significance

Grassland can be found across the UK but there are some areas of significance such as the Culm grasslands and Rhôs pastures (purple moor grass and rush pastures), East Anglian Breckland and areas of the new forest (lowland dry acid grassland) and the Keen of Hamar in Shetland (calaminarian grassland).

Further reading and useful equipment

Guide to Grassland Plants 1

£3.75

Check out other Field Studies Council Fold-out Guides

 

 

Grassland Fungi: A Field Guide

£19.99 

 

 

 

Grassland Restoration and Management

£34.99

 

 

 

 

Opticron Hand Lens: 23mm 15x Magnification

£14.50 £16.50

Check out our guide to hand lenses and our full range.

 

Advanced Bug Hunting Kit

£59.99 £65.60

 

 

 

Q2 Quadrat

£15.50 

 

 

 

All prices correct at the time of this article’s publication.

Author Interview with Danielle J. Whittaker: The Secret Perfume of Birds

In The Secret Perfume of Birds, evolutionary biologist Danielle Whittaker reveals how she came to dispel the widespread myth that birds cannot smell. Mixing science, history and memoir writing, Whittaker offers a humorous and compelling narrative to describe how birds smell and how scent is important for all animals. The book offers readers a rare opportunity to witness the unfolding journey of scientific research and the surprising discoveries it can make.

Danielle kindly agreed to answer some of our questions below.


How did you find yourself studying the science of avian scent?

I was originally studying how birds might choose their mates on the basis of certain immune genes, following the idea that animals could prefer mates with different genes than their own, leading to offspring with stronger immune systems. I was struggling to sequence these genes, and I complained to a colleague who happened to be studying bird brains. He said, “I don’t know why you’d study that in birds – information about those genes is sensed by smell, and birds don’t have much of a sense of smell.” I had never heard that before, and the idea that a whole group of animals would lack such an important sense seemed absurd to me. So, I started investigating.

The idea that birds lack a sense of smell has persisted for more than a century despite being disproved by yourself and others. How did you navigate tackling long-held assumptions in the scientific community?

I conducted rather slow, incremental research, following where the questions led me. I started out with simple, clearly defined experiments to test the birds’ reaction to odours from other birds. Then moved on to working with chemists to analyze the information content present in the odours given off by birds. Little by little, the scientists who heard about work in this area started to pay attention, and soon more people started researching bird smells!

Pink-sided juncos, female (left) and male (right)

I found the most fascinating part of your research to be the discovery that bird scents are linked to their microbiomes. How did you come to look into bacteria and could you expand on their important role?

When I first talked about my research with my now-collaborator Kevin Theis, he looked at the list of compounds I had found in bird odours and said, “those types of compounds are by-products of microbial metabolism. Have you looked at whether symbiotic bacteria are producing these odours?” I had never thought about that possibility before! Kevin studied the bacteria in hyena scent glands and how they produce the odours used by hyenas when they scent mark. Kevin and I teamed up to study the question in birds and we found out that he was right.

Danielle holding a male lance-tailed manakin in Panama

In this book, you demonstrated the importance of scent in bird reproduction. I wonder if human-related impacts on our environment are influencing changes to the unique scents of different species, with consequences for their reproductive success – is there any current research being done on this?

I am hoping to look at whether adapting to living in urban environments has affected the microbiome, and thus the scent, of bird populations compared to their non-urban counterparts. It’s very interesting to think about the long term consequences of such changes, but I don’t think there is much research about that yet in any animal.

Your work focuses on the dark-eyed junco, a bird commonly seen in North America. Is there a particular reason why you chose to study this species and do you have any plans to study other birds in this way?

I was a postdoc in Dr. Ellen Ketterson’s lab at Indiana University, and she has maintained a long-term study of dark-eyed juncos for many years. I quickly found that juncos were very easy to work with, and I appreciate that, in many ways, their biology and behavior makes them ‘typical’ northern hemisphere songbirds – which means they are a good model for understanding lots of bird species. I have studied odours in other species as well, in particular the lance-tailed manakin in Panamá. I am always interested in new birds!

Banded male Oregon junco

Where will your research take you next? Do you have any plans for further books?

Right now, I’m interested in how social behavior changes animal microbiomes through bacteria sharing, and how that might affect odours. I’m also interested in looking at how microbiomes and odours have changed in urban populations of juncos. Beyond my junco research, my professional life has taken yet another unexpected turn, and I am transitioning to a new job as managing director of the Centre for Oldest Ice Exploration (COLDEX) at Oregon State University, where they study Antarctic ice cores to learn about ancient climate change. Maybe I’ll get to visit Antarctica and write about my new adventures!


The Secret Perfume of Birds: Uncovering the Science of Avian Scent
Hardback | £20.50

 

 

This Week in Biodiversity News – 14th March 2022

A new study has found plants that humans don’t need will ‘lose’ in the face of humanity. Around 46,292 species out of the 86,592 vascular plants studied were categorised as ‘losers’ or ‘potential losers’, many of which are not considered to be useful to humans. Due to this, plant communities of the future will likely be more homogenised. The findings cover less than 30% of all known plant species, highlighting that more work is needed in this field.

A project by the environmental group ‘The Nature Conservancy’ aims to undo the ‘degradation’ of a Kentucky stream. The Long Branch stream was straightened decades ago, altering the flow and natural biodiversity along with increasing erosion. Contractors had previously re-created the natural bends, pools and riffles of the stream, placing rocks, tree root wads and burlap material at some places along the banks. Workers are now planting trees along a section of the stream with the hopes of providing better habitat for a small fish called the Buck darter, which is found only in this watershed.

The UN has launched biodiversity talks on a deal to protect nature. The negotiations began in Geneva on Monday with the deal due for approval later this year. Almost 200 countries plan to adopt a global framework to safeguard nature by mid-century, with a milestone of 30% protected by 2030.

A Squat lobster was seen on Shackleton’s Endurance ship, potentially the first Munidopsis species recorded in the Weddell Sea. It is hard to be certain due to the resolution of the released images but Dr Huw Griffiths from the British Antarctic Survey (BAS) suggested the animal could be from the Munidopsis genus, which contains over 200 known species.

SCOTLAND: The Big Picture: Q&A with Peter Cairns

In response to the growing climate and biodiversity crisis, SCOTLAND: The Big Picture is working to drive the recovery of nature across Scotland through rewilding. Using positive storytelling, they hope to inform and inspire change, while also enabling practical rewildling through partnerships and collaborations. They see a role for everyone in creating a wilder Scotland, with a vision of a vast network of rewilded land and water where wildlife and people flourish.

Executive Director, Peter Cairns, has kindly taken the time to answer a few questions for us.

Peter Cairns © Nigel Atkinson / Wild Images

Could you tell us about the work that SCOTLAND: The Big Picture does and how the charity began?

Our core team has been involved in environmental communications for more than two decades so when the rewilding story really started to gain momentum in Scotland, probably about a decade ago, we were well placed to document it. The ‘R’ word (rewilding) remains contentious to this day, but as we embraced it at an early stage, we gradually – and unwittingly – became the voice of the movement, or at least one of them. That gave us a platform and in 2019, we became a fully-fledged charity, working to drive the recovery of nature across Scotland through rewilding, in response to the growing climate and biodiversity crises.

One part of your vision is creating a future for Scotland where people thrive, but development and industry can sometimes be in contention with wildlife. How do you think a nature-based economy could allow for long-term restoration of habitats without negatively impacting communities?

Pitching people against nature helps neither. We need to look for new ways to marry our economic systems with our ecological systems.

We believe the transformational recovery of nature can only be achieved with the support of local communities – rewilding will only work if people can see social, cultural and economic benefits that work in tandem with ecological recovery.

The original principles of rewilding were founded on the ‘3C’s’ – cores, corridors and carnivores, and there’s no reason why such a model can’t be explored in Scotland. ‘Cores’ means areas that are effectively given over to nature, allowing natural processes to shape and govern the land. Around these could be buffer zones, where a high degree of ecological functionality is maintained, but a range of nature-based economic activities, such as payments for natural capital, wild produce and diverse nature-based experiences, help support vibrant communities.

Golden eagle (Aquila chrysaetos) feeding on red deer carcass, Assynt, Scotland © Peter Cairns

SCOTLAND: The Big Picture was a founding member of the Scottish Rewilding Alliance, how have you found the reception of this alliance amongst organisations? Are they generally in favour of large-scale rewilding in Scotland?

Rewilding has come to mean different things to different people and that can be a challenge, but it also provides opportunity for it to be rolled out at different scales and settings, while still making a valuable contribution to nature recovery. The members of the Scottish Rewilding Alliance are all at different stages on their journey, but all recognise that the traditional models of conservation have failed to arrest and reverse ecological decline, and are committed to a fresh, more ambitious, more holistic approach.

Outside of the Alliance, there is a growing appetite for change across Scotland, as land managers look at the social, political and economic horizon, and realise that business as usual is not an option.

Your upcoming feature-length documentary, Riverwoods, reveals the perilous state of Scotland’s salmon and presents the inextricable relationship between fish and forests. What are the main threats to this species and Scotland’s rivers, and why is salmon such a valuable species for forest ecosystems?

Atlantic salmon is a modern-day canary in the mine – an indicator of ecosystem health. The reasons for its spectacular decline, like so many species, are many and complex, and this film doesn’t attempt to address them all. Instead, Riverwoods tells the story of salmon – young salmon in particular -in our rivers, and carries a simple message: The health of our rivers and all the life within them, is directly dependent on the health of the landscapes through which they flow.

Glenfeshie © James Shooter

Perhaps to set the scene, I can quote from a recent article we produced on this very subject:

6,000 years ago, a rich, dynamic woodland ecosystem stretched across 60% of Scotland’s land area. These were diverse forests of Scots pine, oak, rowan, birch, aspen and willow; a complex community of shrubs and bushes, tall trees, tiny trees, dead and dying trees, all intertwined in a constantly evolving system.

Flanking Scotland’s rivers and lochs, these woodlands were shaped by beavers, creating fresh coppice growth, new wetlands and backwaters, raising the water table and toppling insect-laden trees into and alongside the river. The decaying timber provided food and sanctuary for more invertebrates, as well as casting dappled shade across the river’s surface.

Spent salmon, exhausted after an epic journey from freshwater to sea and back again, fed brown bears, wolves, eagles, ospreys and otters, before the precious marine nutrients found in their carcasses, were taken up by the soil nourishing fresh plant and tree growth.

In other parts of the world, the connectivity between river, forest and ocean, and the bountiful runs of salmon that still persist, creates a living, breathing, working system. Here in Scotland, just 3% of our native forest remains, clinging on in isolated, lonely fragments and despite their reputation for beauty and drama, the glens through which our rivers run, are often bare and treeless, reflecting the centuries of ecological decline that we have come to accept as normal.

Pine marten (Martes martes) foraging in pine woodland, Glenfeshie, Scotland © Peter Cairns/scotlandbigpicture.com

How do you think Scotland’s river catchments can be restored? What changes need to take place?

Fundamentally, we need to perceive and manage river catchments as a complete ecological system and not as a series of individual species and habitats. No species exists in isolation and again, the health of our rivers is dependent on the health of the surrounding landscape.

More immediately, many of Scotland’s rivers are getting warmer, some approaching the lethal limit for young salmon, so these fish are crying out for the trees that once shaded and nourished them. The roots of trees like alder and willow, which can live in the water, protect fish from the sun and provide hidey-holes during high flow events. Tree roots help stabilise riverbanks and woody structures like fallen trees in the river, create deep pools and riffles providing salmon with the structurally diverse riverbeds they favour. A lack of overhanging trees also reduces insect numbers which in turn, means less food falling from branches into the mouths of hungry fish.

For people inspired by your work, how would you suggest they get involved?

We normally recommend 3 actions:

WILD YOUR SPACE: It’s easy to imagine rewilding at a landscape scale but this is a journey that offers space for everyone. Parks, gardens and public spaces can all make a valuable contribution to a landscape rich in nature and passionate individuals and communities are already working together to create more space for bats, bees and butterflies. Everyone can get involved.

MAKE SOME NOISE: Rewilding is as much a change in mindset as it is a physical change to the land or sea, so it’s good to talk. Most people don’t realise that Scotland has become a nature-depleted nation. Talk to family, friends and work colleagues about the potential of a rewilded Scotland for nature, climate and people. Encourage them to join our Big Picture community.

PUT YOUR MONEY TO WORK: There are many ways to invest in rewilding. You can support businesses such as local farms that are working to restore wildlife, or nature tourism operators who donate part of their revenues to rewilding. And of course, you can help make more rewilding happen by supporting organisations like SCOTLAND: The Big Picture.

Red squirrel, Sciurus vulgaris, two backlit on pine branch, Cairngorms National Park, Scotland © Mark Hamblin/scotlandbigpicture.com

You can find out more about SCOTLAND: The Big Picture from their website and by following them on Facebook and Twitter.

 

This Week in Biodiversity News – 28th February 2022

A number of previously locally extinct mammals in the Sturt National Park, New South Wales, are now thriving in their feral-free zones, and researchers are amazed by how quickly they have repopulated. With the exclusion of feral cats from enclosures, mulgaras, bilbies and Shark Bay bandicoots have all seen population increases since their translocations. There are also plans to reintroduce another species this year, the golden bandicoot. While this is promising news, ANU ecologist professor David Lindenmayer stated that, while the feral-free zones are helping to conserve animals, both state and federal governments need to do more, including increasing funding and ensuring collaboration between scientists, conservation groups and politicians.

Fulford’s new flood defences have been specifically designed so as not to harm European eels, a critically endangered species. As a small number of eels were found during the initial survey work, particular measures had to be taken to meet strict regulations on protecting them. Specially designed water pumps, which can start and stop slowly as well as operate at a slow speed, will reduce the chances of eels being drawn into propeller blades.

Singapore’s wildlife parks saw 900 animal births in 2021, which is almost double the number that occured in 2020. More than 160 species had newborns last year, inlcuding 44 which are listed as Threatened under the IUCN Red List of Threatened Species. These included the Sundra slow loris, Negros bleeding-heart dove, golden mantellas, false gharial, giant panda and the Sakishima grass lizard.

A new report from IPPC warns that many of the impacts of global warming are now “irreversible”. Four months on from COP26, this is the second of three reviews from the world’s foremost body of climate researchers, and looks at the causes, impacts and solutions of climate change. It shows that climate change is impacting humans and other species far worse than previously indicated, with more than 40% of the world’s population “highly vulnerable” to climate. However, authors of the report say that there is still a small amount of time left to avoid the very worst.

2021 Countryside Management Association Photo Competition

Countryside Management Association (CMA) is the largest organisation in England, Wales and Northern Ireland that supports the work of conservation, access and recreation professionals in the natural greenspace and countryside sector. They also have close ties to the Scottish Countryside Rangers Association (SCRA), Scotland’s own association.

Through networking, training and continuing professional development, CMA supports and champions the development of staff, students and volunteers that are involved in the management, interpretation and public enjoyment of natural greenspaces and the countryside. They promote the value and importance of these areas and their management to the general public, government and other organisations, while also providing organisations who are involved in management with helpful and relevant information.

Last year, the CMA ran a photo competition celebrating the work of professionals in the field and shared inspirational photos of staff and volunteers undertaking work to protect, enhance and interpret these important areas. Participants were encouraged to submit images of work involving anything from habitat management, estate work, and wildlife survey and monitoring to leading events and school visits, and engaging with visitors and volunteers. The competition ran from May 2021 to 7th January 2022. We teamed up with CMA to offer some fantastic prizes: a £100 voucher for first prize and £50 vouchers for two runners-up. 

Results

Winner: Robert Ballard

The winning entry was taken by Robert Ballard, a ranger at Stover Country Park near Newton Abbot in Devon. His black and white image is a portrait of several volunteers undertaking some pond maintenance. Ponds and lakes are important habitats, supporting a wide range of species. Maintaining and enhancing them has a number of ecological benefits, including increasing wildlife diversity, improving water quality, reducing pond edge or lake shoreline erosion and creating better habitats for aquatic species.

First runner up: Jo Maddox

First runner up was Jo Maddox’s image of conservation work with a city background. CMA liked this image as they are currently seeking to promote and represent greater diversity in their membership, and to highlight urban greenspace management in particular. Urban green spaces, such as gardens, parks and woodlands, provide a vital habitat for wildlife, as well as numerous benefits to people living in urban areas. The management of these areas can help to improve and maintain ecosystem health and biodiversity.

Second runner up: Aam Hersey

Second runner up was Aam Hersey’s socially distanced hedge workers, which CMA thought was of the moment. Hedgerows are dynamic and invaluable habitats, providing food, shelter and breeding sites for species such as yellowhammers, great tits and dunnocks. Hedgerows are made up of a wide range of flora groups, often thought as different layers, including the shrub layer, tree layer, base, margin and ditch. Woody species like hawthorn, blackthorn and hazel make up the tree layer. Smaller woody species, shrubs and climbers, for example bramble, honeysuckle and ivy, are part of the shrub layer, which can also include young trees. The base, margin or ditch parts of a hedgerow can be bare ground, grass or be occupied by wildflowers such as herb robert, wood sage and red campion or thick herbaceous vegetation like cow parsley and common hogweed. Each of these components can support different wildlife, therefore hedgerow management is vital to maintain and promote this biodiversity.

Countryside Management Association

For more information on Countryside Management Assocation, please visit https://countrysidemanagement.org.uk/. Here you will find information on membership, training and events.