The NHBS Guide to Thistles

Distinctively prickly with pink or purple flowers, thistles belong to the largest family of flowering plant in the UK (with the exception of the grasses) – Asteraceae. These common plants are found throughout Britain and Ireland, providing key services for invertebrates who seek safety in the sharp spines. The leaves and nectar of thistles are also excellent sources of food for other groups, including pollinators and Painted Lady caterpillars, and several bird species are known to eat the seeds.

Here we take a look at a selection of thistles found throughout the UK, highlighting their distribution and ways in which they may be identified.  


 Creeping Thistle (Cirsium arvense)  

Creeping Thistle by hedera.baltica via Flickr

ID Notes: This perennial flower is named for its far-reaching, creeping roots. The leaves are smooth and grey-green in colour, with wavy, spined edges. The stems are smooth, neither spined nor winged. The flowerheads produce small, pale pink flowers (1.5–2.5cm) in small clusters with pear-shaped bases covered with phyllaries pressed against the flowerhead, curving outwards.  

Distribution: Widespread and common throughout Britain and Ireland. Creeping Thistles can be found from June to October on rough grassland, roadside verges and field edges – a preference for disturbed and cultivated ground is observed in this species.  

 

Spear Thistle (Cirsium vulgare) 

Spear Thistle by Andreas Rockstein via Flickr

ID Notes: This thistle is particularly attractive to pollinators, who are often seen feasting on the deep pink flowers. The large flowerheads (up to three may be present per stem) sit on a bulbous, spiked base with long, spreading phyllaries. The leaves of a Spear Thistle have long, lanceolate segments tipped with spines, and the upper surface is bristly. The stem is covered with light hair and sporadic spiny wings.  

Distribution: Widespread and common throughout Britain and Ireland. It can be found from July to October on disturbed ground such as roadside verges, field edges and pastures.  

 

Welted Thistle (Carduus crispus) 

Welted Thistle by Joost J. Bakker IJmuiden via Flickr

ID Notes: This plant has small, red-purple flowerheads that are clustered together. The base of the flower head has spiny, protruding bracts and the phyllaries project outwards. The branched stems have several rows of spiny wings, and the leaves have broader lobes than is typical for other thistles, with spiny margins. 

Distribution: Widespread throughout Britain, except Ireland. This species shows a preference for nutrient-enriched substrates, including brownfields, field margins, meadows and beside streams.  

 

Marsh Thistle (Cirsium palustre) 

Marsh Thistle by Gertjan van Noord via Flickr

ID Notes: Growing up to 2m in height, this large thistle is easily identified by its purple tinge. The flowerheads are small and are found in large clusters, with small reddish-purple or white flowers and the phyllaries are pressed against the flower head, with tips facing downwards. Leaves are more slender and shorter, with hair visible on the upper surface, they are often tinged purple on the margins and have many spines.  

Distribution: Widespread throughout Britain and Ireland, and can be found in marshes, damp grassland and meadows. 

 

Meadow Thistle (Cirsium dissectum) 

Meadow Thistle by Thibault Lefort via Flickr

ID Notes: Each Meadow Thistle has one flower head on a cottony stem, growing up to 80cm tall the solitary flower has purple-tipped, long bracts and the base covered with light, white hair. The stems are not winged, and basal leaves are toothed in a rosette formation. The remaining leaves are finely toothed, without spines, and have light hair on top, with a white, cottony appearance underneath.

Distribution: Most common in the south of the UK, with strongholds in the south-west and south Wales. Meadow Thistles are scarce towards the north. They can be found in bogs, fens, grassland and meadows.  

 

Musk Thistle (Carduus nutans) 

Musk Thistle by Sam Thomas via Flickr

ID Notes: Growing up to 2m in height, the Musk Thistle is recognised for its greyish-green colour. The flowerheads are large (3–5cm across), often nodding to one side after maturity, and have long, spiny phyllaries and two-lipped petals. The leaves are short and twisted, with spines present on the toothy lobes and are often woolly underneath.  

Distribution: Widespread throughout Britain, but absent from Scotland and Ireland. Most commonly found on calcareous soil from May to September.  

 

Woolly Thistle (Cirsium eriophorum) 

Woolly Thistle by Olive Titus via Flickr

ID Notes: The Woolly Thistle gets its name from its wool-like covering. The leaves are ladder-like and narrow, tipped with spines and are white underneath. The stems are wingless and are covered in cobweb-like hairs, producing a single large flowerhead. The phyllaries on the flower base are downward curved, spread throughout the cobwebbing.  

Distribution: Widespread throughout Britain, with strongholds in the Yorkshire Wolds and the Isle of Wight. The ‘queen of thistles’ often prefers chalky soils.  

 

 

The NHBS Guide to Clovers

Often perceived as a pesky weed in garden lawns, clovers are low-growing, common plants belonging to the family Fabaceae – also home to beans, peas and legumes. These drought resistant plants can be found throughout Britain and Ireland in a range of habitats and are key food sources for a number of pollinators.  

Here we look at a selection of clovers found in Britain, highlighting their identifying characteristics and where they can be found.  


White Clover (Trifolium repens) 

A view of clovers in the grass. Lots of small, white flowers tower above a bed of circular leaves
White Clover by Andreas Rockstein via Flickr

ID Notes: A familiar ‘weed’ of grassy spaces, the White Clover is easily recognised for its distinctive trefoil leaves – three leaflets bearing white markings. The flowers are white, sometimes pink toward the tips, with rounded heads made of many tubular blooms. Left to grow, this plant can grow up to 40cm in height, and is associated with Common Blue Butterflies (Polyommatus icarus) and bumblebees.  

Distribution: Common and widespread throughout Britain and Ireland. This plant can be found in grassy areas from May to October, including gardens, roadsides, meadows and parks.  

 

Red Clover (Trifolium pratense) 

A pink clover, made of multiple smaller flowers, takes a globular shape. It is surrounded by three hairy leaflets with a lighter 'v' shape in the middle
Red Clover by Judy Gallagher via Flickr

ID Notes: Similar to White Clovers, this species has three green leaflets bearing white markings, often ‘V’ shaped. The rounded flower heads bear pink/red flowers, forming clusters that are 2–3cm across. 

Distribution: Common and widespread throughout Britain and Ireland. This species will flower from May to October, and can be found in gardens, meadows, parks and roadsides. It is also sown as a fodder crop for livestock, so can be found in open pasture.  

 

Strawberry Clover (Trifolium fragiferum) 

On the left is a baby pink flower, the bottom half of it is more brown in colour and is dying. On the right is a pale pink fruit, it looks like a raspberry with a swollen, knobbly exterior
Strawberry Clover by Mark Gurney via Flickr

ID Notes: The Strawberry Clover has a densely packed flower head, brimming with pink-red pea-shaped flowers that turn darker throughout the growing season. The leaves have three leaflets, and the fruit resembles a pale raspberry. 

Distribution: Common in the south-east of England, it is found both inland and at the coast. Throughout Wales and northern England, this plant is mostly found coastally. Strawberry Clover can be found in fields, gardens, grassland, woodland and rocky areas.  

 

Hares-foot Clover (Trifolium arvense) 

A white fluffy flower on a hairy stem with hairy leaves.
Hare’s-foot Clover by hedera.baltica via Flickr

ID Notes: These pale pink flowers (2–3cm in size) are covered with small soft hairs giving it a cottony appearance, like a hare’s paw, as the name would suggest. The trifoliate leaves are divided into three leaflets, narrower than other clovers and covered in fine hair. The stalks are also covered in fine, white hair.  

Distribution: Fairly common in England and Wales, with a preference for coastal areas. Hares-foot Clover is uncommon in Scotland and Ireland. It can be found from June to September in dry grasslands, meadows, sandy soils and coastal areas.  

 

Knotted Clover (Trifolium striatum) 

A cylindrical shaped clover, with red veins in the base of the flower head. the leaves have three leaflets and are slightly pink on the edges
Knotted Clover by Thibault Lefort via Flickr

ID Notes: Up to 15mm across, the flowers of a Knotted Clover form pale pink (or white), ovoid flowerheads. The leaves are hairy on both sides and are divided into three toothed leaflets. This clover is easily distinguished by the knotting visible along the stem.  

Distribution: Widespread throughout Britain. Mostly found flowering at coastal sites between May and July, it can be found on beaches, fields, grassland, meadows, roadsides and sand dunes. 

 

Zigzag Clover (Trifolium medium) 

A bright, purple clover. the flower is made of multiple smaller flowers, and the leaves are more pointed with a light edge.
Zigzag Clover by Nina Laakso via Flickr

ID Notes: A dense flowerhead up to 3.5cm across, the Zigzag Clover is similar to the Red Clover, except that it has darker, reddish-purple flowers and spreading flowerheads. The leaves are longer and narrower, with less hair than other clovers and the stem is distinctively zigzagged allowing for easy identification.  

Distribution: Common in England, Wales and Scotland, except the far north. Zigzag Clover can be found from May to July in gardens, grassland, roadsides and verges, often on poor soil.  

 

Crimson Clover (Trifolium incarnatum) 

A bumble bee on a vibrant red pear-shaped flower.
Crimson Clover by Gerard Meyer via Flickr

ID Notes: This plant produces dense, conical-shaped heads of vibrant red flowers. The blooms of Crimson Clover are very attractive to bees, forming a close association in spring and summer. The stem and leaves are hairy, the latter composed of three leaflets.  

Distribution: Not commonly seen in Britain. This species is mostly found from May to September in grasslands, gardens, cliffsides and meadows in the south of the UK.  

 

This Week in Biodiversity News – 15th July

Environment 

Global temperatures have hit 1.5°C above the pre-industrial era average for 12 consecutive months. Analysed by the Copernicus Climate Change Service, data revealed that July 2023 – June 2024 were the hottest 12 consecutive months on record – an average 1.64°C higher when compared to the pre-fossil fuel era (1850–1900). Analysis suggests that these results are not an anomaly but are instead consistent with a shift in the global climate.  

Ranking of annual average surface air temperatures in 2023. Image by Copernicus Climate Change Service

A court has ruled that the rights of the Machángara river have been violated in Ecuador. The ruling was based on constitutional rights for natural features, where Ecuadorian authorities recognise the rights of natural features to remain unpolluted and undegraded.  A wide range of contaminants and pollutants are released into the river, including untreated wastewater and litter, resulting in an average oxygen content of 2% which has inhibited the survival of aquatic life in the region. Although the ruling has been appealed by the city government, the court has ruled that a remediation plan will be required. 

Science  

Researchers have identified artificial light on coastlines as another threat for marine ecosystems. A study has shown that artificially lit areas can attract 2–3 times more fish compared to areas of natural lighting. It is thought that juvenile fish are attracted to congregations of plankton in these well-lit areas and are picked off by predators who are also attracted to the light. Nearly a quarter of the world’s coastline was artificially lit when it was last surveyed almost a decade ago, and the extent of the lighting is likely to have continued to increase since then. This issue has the potential to impact the breeding success of a range of marine species.  

A marine port at night time with bright artificial lights illuminating the area, including the water
Image by Martin Garrido via Flickr

Ants have been found to amputate the legs of their nest-mates to boost survival. Researchers have found that Florida Carpenter Ants (Camponotus floridanus) will perform life-saving amputations on others, the first non-human animal found to do so. The colony was also found to cater their choice of care to the injury at hand and were observed ‘treating’ injuries through intensive licking. Ultimately, a survival rate of 90% was observed following amputation, and 75% with treated wounds. These ants are one of the few animals, aside from humans, that have been found to actively tend to the injuries of their own species. 

For the first time, we are farming more seafood through aquaculture than we catch from the wild. The 2024 State of World Fisheries and Aquaculture (SOFIA) report was released in June and reported that overfishing increased and sustainable fishing declined over 2024 (+4% and –2%, respectively), while overall production rose by over 4%, producing an all-time high of 223 million metric tons of fish. The SOFIA report concluded that progress towards more sustainable fisheries is not moving fast enough, or has regressed to less sustainable practices, and global fisheries management is failing to support these practices when harvesting wild fish stocks.

Wildlife                                                              

Bee colonies in north east England are suffering from the worst disease outbreak in a decade. American Foulbrood (AFB) has been reported in more than 30 colonies in a 10km area, the biggest outbreak since 2014. The disease is caused by bacteria that infect the bee larvae, eventually spreading through the hive and resulting in the death of the colony. A spokesperson from the Cleveland Beekeepers Association has labelled the outbreak as ‘worrying’ but believes the disease is under control.  

A bull moose with large antlers standing in scrub
Bull Moose by Denali National Park and Preserve via Flickr

Human-wildlife conflicts are emerging in Colorado as Moose (Alces americanus) populations extend their range. Introduced to the state in the 1970’s, Moose are now moving into more urban areas from the woodlands and mountain ranges across the state, increasing the frequency of deadly human-wildlife conflicts. The number of recorded Moose attacks each year surpasses the number of puma and bear attacks combined, though Moose are less abundant in the area. Colorado reported three incidents in a fortnight in 2022, and over 59 animals were killed in road traffic accidents that same year. At risk of reaching unsustainable levels, the species could be subject to culling and contraceptive intervention in the future to prevent damage to the landscape and its keystone species.  

 

Going to Bat for Bioacoustics: How Acoustic Monitoring is Helping to Save Bats – Webinar Round-up

Recently, Wildlife Acoustics and Bat Conservation International partnered together to host a webinar highlighting the use of bioacoustics in bat conservation across the globe. The webinar featured three case studies tackling the impacts of white-nose syndrome, habitat loss and climate change with the help of bioacoustic technology. Here, we provide a summary of these case studies and the applications of acoustic monitoring in these investigations. 


Florida USA, Dr. Melquisedec Gamba-Rios 

Endemic to the region, the Florida Bonneted Bat (Eumops floridanus) is increasingly threatened by habitat loss from sea level rise and destructive development. This species has one of the smallest ranges in Southern Florida and utilises old tree cavities and large, open spaces for roosting and feeding. Dr. Gamba-Rios and his team sought to identify critical habitat for this endangered species using bioacoustics, hoping to support their fragile populations.  

The team used acoustic recorders to identify key roosting and feeding areas for the species. Interestingly, they found that Miami’s zoo, golf courses and tropical parks had high numbers of Florida Bonneted Bat calls. The research showed that the large, open areas surrounded by forest and absence of artificial light of these locations provided an ideal foraging space for the species. 

Since these bats require older, cavitied trees, the habitat of the group is at risk as development increases. Plans for water park construction were proposed on a key site for this species, however the evidence gathered here was used to challenge the proposal, resulting in its rejection to protect key bat habitat. In March 2024, over 1.1 million acres of critical habitat were designated for the species in Florida, including foraging areas in urban habitat and over 4,000 acres of Miami Pine Rocklands. Federally protected species are known to be twice as likely to move toward recovery than those without protection, so the designation of these spaces is incredibly important in securing the future of this species.  

Shows a small brown bat with closed eyes, it is held in a blue blanket in daylight
Florida Bonneted Bat by Florida Fish and Wildlife via Flickr

Nyungwe National Park, Dr. Jon Flanders 

Last seen in 1981, the Hill’s Horseshoe Bat (Rhinolophus hilli) was considered a ‘lost’ species in Rwanda.  In January 2019, a group of scientists and researchers, including Dr. Jon Flanders, set out on a 10-day expedition in Nyungwe National Park, looking to rediscover this elusive animal.  

Nyungwe National Park rangers played a key role in the early stages of this project, identifying caves and key habitat for bats in the area. The rangers conducted acoustic monitoring using SM4 Acoustics to identify foraging and roosting areas, collecting over 260,000 files of acoustic data. Eight of these recordings successfully detected the calls of the Hill’s Horseshoe Bat, found in small, defined ranges. During the 10-day trip, the team worked relentlessly to catch, measure and collect DNA samples from bats using mist nets and harp traps in these locations. The team successfully captured two Hill’s Horseshoe Bats and confirmed the capture of this critically endangered species with museum archive specimens. The expedition highlighted the spectacular diversity of Nyungwe National Park which features a large number of rare and endemic species, and these findings reinforce the parks importance as a biodiversity hotspot.

A brown bat is hanging upside down. it has white fluffy mould covering its wings and face
Little Brown Bat with white-nose syndrome by U.S. Fish and Wildlife Service via Flickr

White-nose Syndrome, Dr. Amanda Adams 

White-nose syndrome is a cold-loving, infectious fungal disease found in bats. The fungus manifests in a total skin infection, most visible around the muzzle of the animal. This infection is responsible for significant mortality in several species, where the infection causes bats to wake often during hibernation – burning their fat stores, causing dehydration and starvation. Infected bats can expend up to twice the amount of energy as healthy individuals during hibernation, severely impacting their ability to survive the winter. Because of this, six million animals have succumbed to this infection so far, impacting 12 out of 44 species found in the USA.  

Dr. Amanda Adams sought to use bioacoustics to enhance the management of foraging habitat to support these species through hibernation. The team used the Song meter mini to search for the presence of bats and observe their feeding behaviours. They found that feeding behaviours were observed up to three times more in prey patches, and this allowed researchers to designate feeding habitats for affected species. The survey will be used to inform vegetative management on passing corridors, aiming to increase the productivity of foraging areas to support the health of infected bats.  


The Going to Bat for Bioacoustics webinar provided an engaging insight into the applications of acoustic monitoring in bat research, showing how the technology can be used to support bat conservation. To learn more, the Wildlife Acoustics website has a range of training courses and webinars. Upcoming events can be found here 

 

This Week in Biodiversity News – 1st July

Environment 

An ocean-dwelling fungus has been found to break down marine plastic pollutionParengyodontium album has recently been added to the list of four species of plastic degrading fungi. Researchers have discovered the fungus’ ability to degrade polyethylene plastic, the most abundant form of plastic in our oceans, following a period of exposure to UV radiation from sunlight. It is estimated that the fungus can break down polyethylene at a rate of 0.05% each day, and with over 400bn kilograms of plastic produced annually, this discovery has the potential to provide an answer to the problem of marine plastic pollution.

Image by Papahanaumokuakea Marine National Monument via Flickr

A recently launched programme will aim to restore a 193km stretch of coral reef. Named ‘Ako’ako’a, the project will be one of the first to attempt such large-scale restoration and will focus this effort on the west coast of Hawai’i Island. Due to start in 2025, researchers will identify individuals with desirable traits in the face of climate change, such as high thermal tolerance, fast growth and tolerance to pollution. These selected individuals will then be used to produce larvae with strengthened genetic resistance which will be released during natural spawning periods. With increasing declines occurring over more frequent bleaching events, ‘Ako’ako’a aims to restore ailing reefs across the region.  

 

Conservation 

Canada is set to ban open-net salmon farming in British Columbia in five years. The announcement follows the government’s decision to transition to closed-containment methods in 2019. With more than half of wild salmon stocks declining in the province, the decision has been made to make a step towards protecting wild pacific salmon populations through sustainable aquaculture and clean technology. The commitment has been praised by many, but there are concerns for significant losses in a $1.2bn industry and disruptions impacting up to 6,000 jobs.  

Iberian Lynx are no longer endangered under the IUCN Red List of Threatened SpeciesLynx pardinus has been promoted to ‘vulnerable’, a triumph resulting from a 20-year conservation programme by the EU, national governments in Spain and Portugal and wildlife NGOs. The population initially plummeted to under 100 individuals due to human persecution, reduced food sources and habitat loss across the region. Now, 20 years later, the population has reached over 2,000 in the peninsula. Over 86% of the current population resides in Spain and experts expect to see a full recovery in its native range over the next century. 

A pale rhino laying down on a bed of grass next to a tree
Northern White Rhino by Heather Paul via Flickr

Scientists have successfully implanted a rhinoceros embryo using IVF techniques for the first time. This breakthrough could prove to be a lifeline in saving the Northern White Rhinoceros from extinction. There are only two surviving females in the world, both based in Ol Pejeta Conservancy in Kenya where they are under 24-hour guard. Proving the feasibility of the technology, researchers can now move to transferring a Northern White Rhinoceros embryo into a surrogate Southern White Rhinoceros. This technology brings the scientific community closer to successfully reproducing this critically endangered species, which would significantly benefit the ecosystem of central and eastern Africa.  

 

Wildlife 

The first Scottish Wildcat kittens born outside of captivity have been recorded in Cairngorms national park. Their birth follows the reintroduction of 19 adult wildcats last summer and has been confirmed using camera trap footage. This discovery marks an important milestone in the efforts to reintroduce the species to Scotland, and they are the first to be born in the wild for more than five years. With significant population declines due to habitat loss and human persecution, this success story is an important turning point for the species and will help to reverse centuries of decline.

A scottish wildcat walking across a fallen tree in the woods
Scottish Wildcat by Chris Parker via Flickr

A subgroup of Gray Whales has undergone a significant decline in body length in the past 20-30 years. The Pacific Coast Feeding Group (PCFG), consisting of around 200 individuals, have decreased in size over the past 20-30 years. Researchers found that the group is 13% smaller than those born before 2000, which equates to around 1.65 metres lost in a mature adult. This smaller size could have significant consequences for the health and fecundity of the group, impacting survival rates of calves and their ability to store energy for growth and maintenance.

Solitary Bee Week 2024

Solitary Bee Week was founded in 2018 to raise awareness of the importance of solitary bee populations across the globe. Now hosted by Buglife, this week-long event hopes to encourage the public to pledge their support for these unsung heroes. Solitary Bee Week 2024 (Monday 1st July – Sunday 7th July) gives us a chance to support these vital pollinators and #EarnYourStripes. 

A hairy mining bee resting on a leaf. It has orange hair on its hind legs and long white hair on its thorax, legs and head
Andrena gravida by Frank Vassen via Flickr

What are solitary bees and why are they important? 

It is estimated that there are between 20,000–30,000 solitary bee species across the world, and the UK is home to 240 of them. Solitary bees do not produce wax or honey, do not form hives, and do not exhibit swarming behaviours – a striking difference to the behaviours we usually associate with bees. They typically nest in underground burrows or in the hollows of plant stems and tunnels, so it is no surprise that we are seeing a downturn in the abundance of the group with increasing urban development and environmental decline.  

As we urbanise, we remove the habitat of these extraordinary pollinators – we are seeing fewer hedgerows and wildflower meadows, which would otherwise provide vital food sources for these insects. Partnered with agricultural intensification, environmental changes are contributing to the significant declines we see in pollinators. Solitary bees are important for pollination, and their loss could be devastating not only to the environment, but for food security worldwide. Solitary Bee Week is helping raise awareness of these insects in the hopes of managing their threats and preventing further declines in the future. 

 

Image by Buglife

 

How can I take part? 

From pollinator identification workshops to solitary bee walks, Buglife is hosting a range of events in support of Solitary Bee Week. An interesting highlight of the week, Buglife have collaborated with Hayley Herridge the Pollinator Gardener to create the ‘B-Lines Garden’ to be featured in the Hampton Court Palace Garden Festival – highlighting the importance of insect pathways to provide corridors for pollinators. Find the full week’s itinerary here 

 

What can I do to support my local bees? 

Solitary Bee Week is the perfect time to pledge your support for local solitary bees.  

Leaving an area of exposed soil and providing bee hotels are great ways to provide nesting areas. Mining bees account for around 70% of solitary species – patches of exposed soil are an excellent way to provide space for this group, where they create underground nesting burrows. For cavity nesting bees, such as Red Mason Bees, hotels are a great way to provide nesting habitat where they will lay eggs in the dry, hollow tubes. Planting wildflowers and nectar-rich plant species is another way to support pollinators by providing an important food source. 

Here we have chosen a selection of products in our range that can support solitary bees in your outdoor space: 

#262715 Solitary Bee Bricks  

 

#217363 Insect Tower 

 

#257245 Solitary Bee Nesting Tin 

 

 

#264931 Bee Barn Gift Box 

 

#259552 Solitary Bees (Hardback) 

#261456 Hairy-Foot, Long-Tongue (Paperback) 

 

#244919 The Solitary Bees (Hardback) 


 

Author interview with Christopher Hart – Hedgelands

Hedgelands book cover showing an artistic drawing of green hedge leaves on a dark green background, with leaves woven over the white text in capital letters saying 'Hedgelands.'Hedges and hedgerows have long been an integral part of the British landscape and are now considered the greatest edge habitat on earth. Hedgelands shines a spotlight on the hawthorn and hazel of ancient hedges, thorny scrub and the creatures that call this habitat their home, telling you everything you could ever want to know about this wild, diverse and incredibly rich habitat – it may even change your perspective of the humble British hedgerow for good.

Portrait of author Christopher Hart wearing a checked shirt, gillet and flat cap with a large hedge behind him.

Christopher Hart has authored ten literary and historical books that have been praised by both The Times Library Supplement and Sunday Sport. He’s written numerous short stories, essays and reviews on a range of subjects, and has worked as a freelance journalist since the 1990s. Hart now lives on a seven-acre plot in Wiltshire which he is in the process of rewilding.

We recently had the opportunity to chat with Christopher about what inspired him to write a book about hedges, how he thinks we can change peoples perceptions of the humble hedgerow and more.


As a writer of primarily historical fiction, what inspired you to write a book celebrating British hedges?

Well, I’ve had quite a chequered career: as well as the historical fiction thing, I’ve been a Mr Whippy Ice Cream Van Driver, Theatre Critic of the Sunday Times, and Agony Uncle for Time Out magazine. None of which qualify me to write about hedges! But really the English countryside is a lifelong passion, and working on our own patch of seven acres, with intermittent grazing, plus trying to encourage maximum wildlife, has taught me directly how vital hedges and thickets are to the entire system. Then my friend Jonathan did this survey on one of his own restored and re-laid hedges, found vivid evidence of the huge benefits to invertebrates, and said to me, Why don’t you write a book? So that’s how it started.

Jonathan stood in front of his re laid hedge.
Jonathan stood in front of his re-laid hedge, by Christopher Hart.

Hedgerows have demonstrable benefits to the environment, yet are often overlooked and under-appreciated by many. How can we change public perception of and attitudes towards the humble hedgerow?

I think real-life examples always work better than statistics. And maybe demonstrating to people directly how many birds, butterflies etc. flourish in our hedgerows could have a great effect, as could enlarging and protecting hedgerows on amenity land, where people actually go regularly, rather than farmland: allotments, for instance, churchyards, and even school grounds.

How does the historical, manual management of hedgerows compare to the mechanical methods used in some agricultural practices today? And how can we encourage a change to more conservation-centred management in these spaces? 

Like every other farm job, the old manual method of hedge-laying with an axe and billhook is a great art and beautiful to watch – but also very slow and expensive! Unless it could be done by teams of roving volunteers, which is a promising idea. But even flailing can be made instantly more eco-friendly by simply doing it every two years instead of one. That could really help, and as I think Jake Fiennes suggests, would actually save the average farmer around £2,500 a year on diesel alone.

A generous field margin on a productive arable farm showing a wide, long grass border against a flourishing hedge.

Can you share some examples of individuals, organisations or locations that are paving the way for best-practice hedgerow management?

I think all the big conservation charities, like the RSPB, are very aware of hedgerows’ importance now, but there are also some admirable specialists like Hedgelink. And the Devon Hedge Group are terrific, doing direct, hands-on work there. If you want to see a truly spectacular hedge though, don’t miss the massive bristling rampart of the ‘Nightingale Hedge’ at Knepp. It’s magnificent! 

How can we get involved in bringing hedgerows to our local communities, and how may we incorporate a hedge into areas with limited space?

One reader of my book has already contacted me for advice on how the hedges in his daughter’s school grounds could be made more nature friendly, perhaps by re-laying or just allowing to thicken up that’s a great example of what we can do quite independently of farmlands. Another suggestion I have is to ‘rewild’ a typical, slightly overmanaged garden hedge, that might be just mono-cultural beech or holly, and let climbers and creepers into it as well: relax about a bit of ivy, or even bramble, let a few nettles grow, or as we have done, allow some self-sown honeysuckle to trail over your privet hedge. Then go out on a warm summer evening and admire the moths that turn up. If the sight of an Elephant Hawk moth doesn’t convert you, I don’t know what will! 

Man-made thicket full of blackthorn in a field.

What’s next for you? Do you have plans for more nature writing?

I most certainly do. The only difficulty is choosing which one to pursue. In the last year I did some experimental ‘re-bogging’ of a small riverside field that was just too waterlogged to offer good grazing, or any other kind of useful food production. It took me all of half an hour with a spade, diverting a field-side drainage ditch. The result has been a quite spectacular explosion of dragonflies and snipe in the winter. I’d love to write something about that. ‘Re-bogging Britain, or ‘The Joy of Re-bogging. What do you think? 


Hedgelands book cover showing an artistic drawing of green hedge leaves on a dark green background, with leaves woven over the white text in capital letters saying 'Hedgelands.'

Hedgelands is published by Chelsea Green and is available from our online bookstore.

Top 5: Trail Cameras

Trail cameras can be extremely useful tools for ecologists and naturalists, enabling simple non-invasive monitoring of wildlife. Here we feature five of our most popular models, highlighting the key features of each for easy comparison. 

For more detailed information please read our Trail Cameras Buyers Guide. 


#256294 Browning Spec Ops Elite HP5  

Browning Spec Ops Elite HP5 trail camera

A good quality trail camera with fast trigger speed, this model is an excellent all-rounder.

Image quality: 24 mp
Video quality: 1920 x 1080p
Video length: Max 2 minutes
Glow: No glow
Trigger speed: 0.1-0.7 seconds
Recovery: 0.5 seconds
Flash range: 30 metres
Detection range: 24 metres
RADIANT 5 illumination technology

 

#258744 Spypoint Flex 

#258744 Spypoint Flex trail camera

An innovative low-glow trail camera with cellular transmission to transfer images to a mobile device.

Image quality: 33 mp
Video quality: 1920 x 1080p
Video length: Max 15 seconds
Glow: Low glow
Trigger speed: 0.3 seconds
Flash range: 30 metres
Detection range: 30 metres

 

 

#259714 Num’axes PIE1059 Trail Camera

Cost-effective and entry-level, the Num’axes PIE1059 is a robust, no-glow trail camera with great resolution.

Image quality: 32 mp
Video quality: 1920 x 1080p
Video length: Max 30 seconds
Glow: No glow
Trigger speed: 0.6 seconds
Flash range: 20 metres
Detection range: 20 metres
2″ colour screen

 

 

#256293 Browning Recon Force Elite HP5

A low-glow alternative to the Browning Spec Ops Elite HP5. This camera is a good all-rounder and is suitable for fast-moving animals.

Image quality: 24 mp
Video quality: 1920 x 1080p
Video length: Max 2 minutes
Glow: Low glow
Trigger speed: 0.1-0.7 seconds
Recovery: 0.5 seconds
Flash range: 39 metres
Detection range: 30 metres
RADIANT 5 illumination technology

 

#246930 Spypoint Solar-Dark Trail Camera

A super fast, no-glow model, this trail camera features a solar panel providing users with an extended battery life.

Image quality: 12 mp
Video quality: 1280 x 720p
Video length: Max 2 minutes
Glow: No glow
Trigger speed: 0.07 seconds
Flash range: 27 metres
Detection range: up to 33.5m
2″ colour screen

 

 

 


Recommended Reading:

#222466 Camera Trapping for Wildlife Research  

Paperback | June 2016

A guide to the use of camera trapping for most common ecological applications to wildlife research.

 

 

#227479 CCTV for Wildlife Monitoring 

Paperback | June 2016

A handbook on the use of CCTV in nature watching, conservation and ecological research.

 

Restore Nature Now 2024

The Restore Nature Now March took place in Central London on Saturday 22nd June. The march saw the coming together of over 350 charities, businesses and direct-action groups calling on the government to work harder to protect biodiversity in the UK and Restore Nature Now!  Some of the NHBS team travelled up from Devon and joined the estimated 100,000 people that took part in the march. 


 

‘The Restore Nature Now march felt really galvanizing. It was heartening to walk with so many ecologists, scientists and activists and to dip into conversations about the amazing work people are participating in around the country to lead and assist in nature recovery. I was really moved by the impassioned speeches in parliament square from a host of brilliant speakers, and the sight of three peregrine falcons over Westminster was a potent and magical moment too!’ – Oli

 

A large puppet bat held by a crowd.
A large bat puppet made by the Bat Conservation Trust.
A vibrant banner to stand up for nature.

 

‘It felt great to be a part of the march and join so many other people passionate about our nature and wildlife.  The speakers at Parliament Square were inspirational, sadly I’m not sure if our politicians heard them, but we will be back and continue to be a voice for nature.’ Adam

An estimated 100,000 took part in the march.
The march was supported by a range of nature-focused organisations including RSPB, Plantlife and WWF.
The family-friendly march had lots of entertainment and interactive activities.

WHY DID THE DEMONSTRATION TAKE PLACE? 

Restore Nature Now took place to call on political parties to act on the climate crisis and use the upcoming general election as a turning point. Their demands are as follows: 

A PAY RISE FOR NATURE: To facilitate nature recovery, agricultural landowners need more support to make climate-friendly choices, and to do this, Restore Nature Now urged the UK government to double the nature and climate-friendly farming budget.  

MAKE POLLUTERS PAY: Big business significantly contributes to environmental decline and the climate crisis, and to tackle this, organisers asked for new rules and regulations to be introduced to enforce greater contributions.  

MORE SPACE FOR NATURE: Restore Nature Now campaigned for the expansion and improvement of protected areas and called for an improvement of public land and national parks to make a greater contribution to nature recovery. 

A RIGHT TO A HEALTHY ENVIRONMENT: Calling for the creation of an Environmental Rights Bill, organisers are looking for the UK Government to drive better nature decisions to improve public health. 

FAIR AND EFFECTIVE CLIMATE ACTION: To solve the climate crisis, and in turn save nature, more investment is required into effective climate action. 


Restore Nature Now was a fantastic demonstration of hope and a call to action for the UK government. Our staff had an enlightening experience and thoroughly enjoyed the entertainment and talks throughout the day.  

Author Interview with Jenny Macpherson: Stoats, Weasels, Martens & Polecats 

Stoats, Weasels, Martens and Polecats book cover showing an orange, white and purple lino print of a two stoats on a rock within ferns.The latest volume in the New Naturalist series, Stoats, Weasels, Martens & Polecats focuses on the four species of ‘small mustelids’ – highly specialised predators and ubiquitous assassins, some of which were once hunted to near-extinction. This delightfully rich text details their physiology, distribution, daily lives, significance in UK history and folklore, while also intertwining the authors own experiences working at the forefront of mustelid conservation across England and Wales.

Jenny MacPherson portrait, wearing a yellow knitted hat and a thick winter coat with the hood up.

Jenny MacPherson managed the Pine Marten Reintroduction Project for many years before taking over as the Principle Scientist at The Vincent Wildlife Trust. She has a longstanding background in zoology and research, holds an MSc in Conservation at the University College London and a PhD from Royal Holloway.

Jenny recently took the time out of her busy schedule to talk to us about the book, including how she first became interested in mustelids, how she thinks these animals will fare in relation to the current climate and environmental challenges and more.


Can you tell us a little about your background and what first interested you in mustelids? 

I studied zoology at university as a mature student, having worked as a theatre costume assistant in London when I left school. Actually, my first experience of mustelids was the rather unflattering portrayal of the Stoats and Weasels in the National Theatre production of The Wind in the Willows that I worked on, back in 1990! – I was responsible for getting Otter into his costume, a 1920s style knitted bathing suit. Then, as an undergraduate at Royal Holloway University, I planned my dissertation project on Pine Martens, having been captivated by them on holidays in Scotland, where it was such a rare treat to see them. Since then, mustelids, and especially Pine Martens, have been a major interest of mine. 

Stoat stood on a log.
Stoat by Andy Morffew, via flickr.

What are the challenges of studying this group?  

It is very difficult to study elusive, nocturnal animals that live at low density and are patchily distributed. It certainly tests our ingenuity. Thankfully some of the rapid advances in technology are helping, as I describe in the book. 

How do you think small mustelids in the UK will fare in the face of climate and environmental change? 

It is difficult to predict and it will likely vary between species. Pine Martens might ultimately benefit from increases in afforestation for carbon storage, but in the meantime existing forests are coming under multiple pressures from recreation, timber harvesting and emerging plant diseases. The impacts of environmental change on prey populations shouldn’t be underestimated either. Some long-term studies have already shown declines in the abundance and diversity of small mammal communities linked to climate change, which is of concern for all of our native carnivores. 

Weasel stood with its front paws on a rock in some long grass.
Weasel by Alan Shearman, via flickr.

Historical opinions held by some across the UK favour culling of mustelids. For instance, Pine Martens in Scotland are at risk of predator-control trapping due to a perceived risk to livestock and game birds. What can we do to challenge these long-held, traditional ways of thinking in relation to UK predators? 

We need to raise greater awareness of natural processes, including predation. Predators have a number of important functions and play a key role in supporting our ecosystems. In Britain, these have been out of balance for centuries as a result of human intervention and we have become used to ‘controlling’ any animals that cause us an inconvenience, rather than working together to find practicable ways of living alongside predators. 

Pine Marten stood on a broken Silver Birch log.
Pine Marten by Caroline Legg, via flickr.

Citizen science projects are a great way for people outside of the field to get involved with conservation research. Are there any resources where the public can submit sightings? And how can citizen science benefit the conservation of this group? 

Citizen scientists and volunteers are crucial to conservation research and we have a long history of their involvement in Britain. Vincent Wildlife Trust collect sightings and other records of Pine Martens and are currently also carrying out a two-year national survey of Polecats. More information can be found on the website at www.vwt.org.uk. The collective effort of citizen scientists makes it possible to gather huge amounts of information over large areas and time frames, which helps to focus conservation efforts where they are most needed for these species. 

Are you working on any other projects you would like to share with us? Can we expect more books from you in the future? 

I am currently working on a number of projects in my role at Vincent Wildlife Trust, including a feasibility study for reintroducing European Mink to the southern Carpathians in Romania, and I have just started writing another book. 


Stoats, Weasels, Martens and Polecats book cover showing an orange, white and purple lino print of a two stoats on a rock within ferns.

Stoats, Weasels, Martens & Polecats is available to pre-order from our online bookstore.