Wilder Sensing: An Interview with Geoff Carss

Wilder Sensing, founded in 2021, is bringing innovative techniques to conservation, providing additional insights into biodiversity. This promising tech start-up featured on Springwatch this Wednesday (12th June), showcasing the applications of this innovation. We had the opportunity to chat with Geoff Carss, CEO of Wilder Sensing, on the organisation, its role in conservation and the future of technology in the field.


Can you share with us why Wilder Sensing was founded and what the company is involved in? 

Wilder Sensing was founded to ensure that anyone can collect high-quality, long-term biodiversity data. There are many different ways of doing this, but we focus on sound. By recording 24/7 for weeks, or even months, you can build up a very rich picture of what is present in an environment. The technology we use is low-cost with limited bias, and it is easy to use, even for non-professionals. It’s not perfect, especially because we are focusing on birds at the moment. Not all birds make much noise – some make very subtle noises which we can’t pick up – but for most species it works well. 

Can you tell us about the capabilities of Wilder Sensing technology and the insights that it can provide for a given environment?

We work with our customers to agree on survey patterns and how many recorders should be deployed on each site. The customer uploads their audio files to our website, and once they have arrived, we automatically process them using machine learning. It takes us around 20 seconds to process an hour-long file, and we can process many in parallel. During this, the technology checks every three seconds to see if a sound has been detected – every sound gets a species match, and a probability is assigned. So, for instance, the technology will be 92% certain that it has detected a Robin. Through this, we can give a species richness assessment, which is a species list at the moment. Our technology is currently unable to tell us how many individuals there are in a given space – there could be one very noisy bird, or ten very quiet ones.   

However, bioacoustic surveying technology does not remove the need for ground truthing. It is still important to get the baseline. Ecologists will find species that we don’t pick up. And the converse is true as well. We can find 20-30% more species when combining acoustic and traditional surveys. We are also working on other approaches for the future, like triangulation, which could identify exactly where a sound is coming from. 

Over 45,000 records were species-matched in the Peruvian Amazon. Image by Wilder Sensing.Can you tell us about the current projects that you are involved in and the role that bioacoustics played in conservation?  

We’re involved with a whole raft of different projects. We are working with environmental consultancies, Wildlife Trusts and NGO’s using acoustic technology for long-term surveying. Wendling Beck in Norfolk is a site that we have been working on for around 18 months. We realised that Skylarks are using one small part of the site, but you don’t see this until you look at the data – when you are just walking around, you don’t make that connection. If you look at some species, you might think that you have a ubiquitous habitat, but when you start looking at the distribution of birds and their calls, you may find that there are many times more calls in one part of the site. If you were to redevelop an area, you would probably lose some species altogether, but going into a development project, knowing that’s a likely ecological consequence, is really important and that is why acoustic technology is so valuable. 

What is the future for AI in conservation? Where do you think its applications could take us over the coming years??

I think it has a lot to contribute. To get good, accurate data you need highly skilled ecologists, people that really understand bird sound – it takes years to build those skills. I think the role will change so that ecologists will get more involved in survey design and interpreting the data to understand the consequences of a project. It becomes much more evidence-based and more quantitative. We have some customers who deploy up to 20 recorders, and you can get a quarter of a million acoustic records on each device. With that amount of data, you can start to ask different questions and we can see all kinds of behaviours that we couldn’t see before.   

In the South-west, some farmland was purchased to develop into allotments and after digging, they found that Skylarks were nesting on-site. Biodiversity Net Gain (BNG) does not look at species, so a habitat survey would not record Skylarks in the area. If acoustic recorders had been deployed on site, ecologists would know they were present – so well-rounded data will also help developers plan better, mitigating issues from the onset of construction. The BNG survey was designed to be consistent and relatively easy to use, and species surveys could prove to be more difficult because of inconsistencies and methodologies etc. With AI we can move to a new level of understanding. If you just stick the recorder out, it is consistent in how it works and removes bias.

Over 4,000 calls were detected from Meadow Pipits at Wendling Beck. Image by Kev Chapman via Flickr.

For those interested in bioacoustics, it is worth noting that you will be holding webinars from July. What can we expect from these sessions?  

We have three sessions lined up. The first one is on 7th July and is about measuring nature using sound. It’ll dig into both how the technology works and how it compares against other methods, and hopefully we’ll have an open discussion around its strengths and weaknesses. The session is intended for people who are interested in the subject, and we will go through some examples. 

This will be followed by two in the autumn, which are more technical and are perhaps more suited to professional ecologists. These sessions will be touching on some of the technology behind Wilder Sensing and some of the ways it should and shouldn’t be used.

What is Wilder Sensing hoping to achieve over the next decade?  

I am hoping to move onto other taxa, the obvious ones being insects and bats. We would also like to look at triangulation as well – if we can triangulate how birds and bats are using a landscape, we can use this to help inform better environmental management. I think this data will be used with other environmental data in the future. People doing nature restoration or project planning need to understand the water quality, air quality, the climate etc. to get a better environmental outcome. And even forward-looking companies, we can look at their supply chain as well.

An acoustic sensor deployed at Honeygar Farm. Image by Wilder Sensing.

Increasingly the media are reporting on the quietening of British soundscapes, a symptom of the biodiversity and climate crisis we are facing. How do you think Wilder Sensing will adapt to an increasingly quiet environment? Will technology need to adapt to keep up?  

Wilder Sensing technology will quantify exactly what is happening in the biodiversity crisis. I have a copy of the iconic Silent Spring by Rachel Carson, which was published 60 years ago, and we haven’t learned from that. I think this type of technology will hold a mirror up to people to show exactly what is going on. I would love to get a good quality recording from 50 years ago, maybe two or three hours of dawn chorus in woodland, and go back to the same time of year in the same place (assuming it still exists) and compare it. Showing exactly that this is the difference in diversity.   


To find out more about the innovative work by Wilder Sensing, their blog features some interesting case studies on the applications of their technology and they are also active on LinkedIn. For more information on Wilder Sensing and their product, email info@wildersensing.com.   

 

The NHBS Guide to UK Finch Identification

Finches, in the family Fringillidae, are small to medium-sized birds, often having colourful plumage and short, triangular beaks, though this can vary depending on food preference. They’re found across the world, excluding Australia and the polar regions, and include more than 200 recorded species. The family Fringillidae is split into two subfamilies: Fringillinae and Carduelinae. In the UK, there are more than 15 finch species with breeding populations, along with several migrants and occasional visitors.


Hawfinch (Coccothraustes coccothraustes) 

A Hawfinch perched on a snapped twig in the centre of frame
Hawfinch by Luiz Lapa via Flickr.

Distribution: Mainly found in southern England, with populations in the north and south of Wales as well as southern Scotland. 

Habitat: Woodland, particularly forest canopies. 

Size: Length: 18cm, Wingspan: 31cm 

BoCC5 status: Red  

What to look for: This is the largest finch in the UK, with a large head and thick beak. They are mainly a rusty brown colour, with a darker brown back and wings. Their white undertail, tail tip and wing bars are easy to see in flight. Their head is a warmer orange-brown and they have a grey band around their neck. The black border to the base of their beak stretches down the front of their throat and towards the eye. The prominence of these features can vary between individuals, with females usually paler than males.  

 

Bullfinch (Pyrrhula pyrrhula) 

a male bullfinch with a bright red breast sitting on a branch
Male Bullfinch by F. C. Franklin via Flickr

 

Female Bullfinch by Luiz Lapa via Flickr
Female Bullfinch by Luiz Lapa via Flickr

 

 

 

 

 

Distribution: Widely distributed across Britain and Ireland. 

Habitat: Woodlands, orchards and hedgerows. 

Size:  Length: 14.5–16.5cm, Wingspan: 22–26cm 

BoCC5 status: Amber 

What to look for: A larger species of finch, the Bullfinch has a thick, black bill and distinct colouring. Males have a vibrant pink-orange breast, with a contrasting white rump, grey back, black cap and tail. Females are duller in colour, with a light reddish-brown breast and back.  

 

Goldfinch (Carduelis carduelis

A goldfinch sat on a small branch
Goldfinch by Caroline Legg via Flickr

Distribution: Widespread throughout England and Wales, largely absent in upland areas such as northern Scotland 

Habitat: Urban greenspaces, heathland and commons with seeding plants such as thistles, farmland, wetlands and woodland.   

Size: Length: 12cm, Wingspan: 21–25.5cm 

BoCC5 status: Green 

What to look for: A recognisable and colourful finch, the Goldfinch has a bright red face with white cheeks and a black crown. Its golden-brown back is framed with black wing edges and yellow wing patches. Both males and females look alike.  

 

Greenfinch (Chloris chloris

Greenfinch on a tree branch
Greenfinch by Andy Morffew via Flickr

Distribution: Widespread, largely absent in upland areas such as northern Scotland 

Habitat: Urban greenspaces, heathland and commons with seeding plants such as thistles, farmland, wetlands and woodland.   

Size: Length: 15cm, Wingspan: 26cm 

BoCC5 status: Red 

What to look for: Adult Greenfinches are, as their name suggests, green, but their wings and tail are mostly grey with a bar of bright yellow. They have a grey patch on their cheeks and a pink bill and legs. They have two distinct calls: a long wheezing call and a more melodic call consisting of trills and fast whistles.  

 

Chaffinch (Fringilla coelebs

Chaffinch standing on grass
Chaffinch by Sid Mosdell via Flickr

Distribution: Widespread. 

Habitat: Woodlands, hedgerows, urban greenspaces, farmland and heathland. 

Size: Length: 14.5cm, Wingspan: 24.5–28.5cm 

BoCC5 status: Green 

What to look for: One of the most common garden birds in the UK, the Chaffinch has a loud, distinctive song and colourful plumage. Males are memorable for their chestnut-orange breast and back, contrasted with a blue-grey crown and white shoulder patches. Females are less colourful, featuring a light brown breast and back.  

 

Linnet (Linaria cannabina

Linnet on a small branch
Linnet by Alan Shearman via Flickr

Distribution: Widespread in Britain and Ireland, absent from upland north Scotland.  

Habitat: Commons, heathland, farmland, saltmarshes and urban greenspaces. 

Size: Length: 13.5cm, Wingspan: 21–25.5cm 

BoCC4 status: Red 

What to look for: A smaller, slenderer finch, the Linnet is historically known for its melodic song. The male Linnet boasts a crimson forehead and chest, with a grey head and brown back. Females are paler in appearance and showcase the characteristic streaky brown hue of the species, though lacking reddish patches. Linnets may be found in large flocks during winter, often mixing with other seed-eating finches.  

 

Siskin (Carduelis spinus)  

Male Siskin on a pine branch
Male Siskin by Caroline Legg via Flickr  
Female Siskin on a broken piece of wood
Female Siskin by Caroline Legg via Flickr.

Distribution: Found across the UK, most abundant in Scotland and Wales.  

Habitat: Tree tops in coniferous and mixed woodland, urban greenspaces. 

Size:  Length: 12cm, Wingspan: 20–23cm 

BoCC5 status: Green  

What to look for: A streaky green finch with a narrow bill, the Siskin is a resident breeder in the UK. Males have a distinct black crown and chin, with yellow cheeks and breast, and yellow streaks on black wings. Less colourful, females are a dull yellow on the head and back, with a streaky breast and underside. Both have a forked tail. Often found gathered in groups over winter with other finches.   

 

Serin (Serinus serinus

Serin bird sitting on a small branch covered in lichen
Serin via RSPB

Distribution: An occasional visitor in southern England and the Channel Islands

Habitat: Coniferous woodland, farmland and urban greenspaces 

Size: Length: 11–12cm, Wingspan: 18–20cm 

BoCC5 status: Not assessed, former breeder 

What to look for: A small, brown streaky finch with a stubby bill. Males feature a vibrant buttercup-yellow head and breast, with brown patches on the crown and cheeks. Females are less eye-catching, browner in colour with soft yellow hues. Both males and females have a forked tail and yellow streaks on brown wings.  

 

Common Rosefinch (Carpodacus erythrinus

Common Rosefinch breeding-male sitting on a branch
Common Rosefinch breeding male by Birds of Gilgit-Baltistan via Flickr
Common Rosefinch female by Imran Shah via Flickr

Distribution: A rare visitor, mainly observed in the northern Isles, east coast of Scotland and southern England. 

Habitat: Woodland, scrubland and urban greenspaces. 

Size: Length: 13.5–15cm 

BoCC5 status: Not assessed 

What to look for: Common Rosefinch are similar in size to a Chaffinch. Males have a striking scarlet head, breast and rump. The wings are a woody-brown, contrasted with a pale, whitish underside. Juveniles and adult female Common Rosefinch have a lightly streaked olive-brown plumage and a short beak. Juveniles are mostly observed in autumn during migration, and adult males may be seen in spring.  

 

Common Crossbill (Loxia curvirostra) and Parrot Crossbill (Loxia pytyopsittacus

 Common Crossbill: 

Common Crossbil (male) by Ashley Wahlberg via Flickr
Red Crossbill (female) by Luiz Lapa via Flickr

 

Parrot Crossbill: Female (left) by Tero Laakso via Flickr, Male (right) by Alan Shearman via Flickr 

Parrot Crossbill (female) by Nina Laakso via Flickr

 

Red Crossbill (male) by Ashley Wahlberg via Flickr

Distribution: Common Crossbill: widespread throughout Britain and Ireland. Parrot Crossbill: rare resident in Caledonian pinewoods of north-eastern Scotland. 

Habitat: Coniferous woodland. 

Size: Common Crossbill: Length: 16cm, Wingspan: 29cm. Parrot Crossbill: Length: 16–18cm, Wingspan: 30–34cm 

BoCC5 status: Common Crossbill: Green, Parrot Crossbill: Amber 

What to look for: Common Crossbill: Named for their distinctive crossed beak, the Common Crossbill is a large finch with a forked tail and colourful plumage. Showcasing a vibrant, brick-red head, breast and underside, a male Common Crossbill is easily distinguished from its female counterpart. Instead of the characteristic vibrant plumage, females have an olive-green colour on the head, breast and belly, with a yellow rump and grey wings. Juveniles have a grey-brown streaky appearance. Parrot Crossbill: A slightly larger species, with a deeper, heavier bill, the Parrot Crossbill is difficult to distinguish from their common cousins. Males feature a similar, orange-red head and breast with muted grey wings and tail. Females also have olive-green plumage with the characteristic crossed bill.  

Did you know? A close relative, the Scottish Crossbill (Loxia scotica), is endemic to the Caledonian pine woods of Scotland. They are the only bird to be found in these forests and nowhere else in the world.  

 

Common Redpoll (Acanthis flammea) and Lesser Redpoll (Acanthis cabaret) 

Common Redpoll by Lisa Hupp/USFWS via Flickr
Lesser Redpoll by Signhmanb via Flickr

Distribution: Common Redpoll: Visitor to the UK in winter during migration, seen in eastern Scotland and England. Lesser Redpoll: Widespread. 

Habitat: Birch, Larch or Alder woodland, urban greenspaces, farmland. 

Size: Common Redpoll: Length: 12–14cm, Wingspan:20–25cm. Lesser Redpoll: Length: 12–13cm, Wingspan: 22cm 

BoCC5 status: Common Redpoll: Red, Lesser Redpoll: Not Assessed. 

What to look for: Common Redpoll: Paler than their vibrant cousins, Common Redpoll are streaky brown from above, with a pale white plumage from below. Displaying a vibrant red forehead and pink breast in summer, they are remarkably similar to their smaller cousins. Lesser Redpoll: Slightly smaller, Lesser Redpoll are a similar streaky brown with red colouring on the crown and pink-red breast in summer. They have a black bib under a small, yellow bill. Females appear similar to male counterparts, without the pink flush on the breast. Juveniles are streaky brown and do not have a red crown or pink flush. 

 

Twite (Linaria flavirostris

Twite by Gertjan van Noord via Flickr

Distribution: Found in upland England, Wales and coastal Northern Ireland during summer months. East coast of England in winter. Widespread in Scotland.  

Habitat: Moorlands, coastal saltmarshes, coastal crofts. 

Size: Length: 14cm, Wingspan: 22–24cm 

BoCC5 status: Red 

What to look for: A small, streaky brown finch with a forked tail and a short bill. Twite have a brown back with dark streaking, a pale underside and streaking on the breast. During summer months the bill is grey, where it turns yellow for winter. A rich golden-brown face and upper breast are also present during winter months. Males are distinguished by a pink rump during summer.

 

Brambling (Fringilla montifringilla

Brambling by Caroline Legg via Flickr

Distribution: Widespread in the UK during winter 

Habitat: Beech woodlands, hedgerows, stubble fields, farmland and urban greenspaces.  

Size: Length: 14cm, Wingspan: 26cm 

BoCC5 status: Green 

What to look for: A brightly marked winter visitor, Brambling are of similar size to a Chaffinch. They have a rust-orange hue over the breast and shoulder which is more vibrant and extensive among males. Males have a blue-grey head which transforms to a sleek black during summer breeding. During winter, they sport a flecked black and brown plumage, contrasting a white belly and rump. Wings are dark in colour with orange bars. Females have a softer orange breast than males, and a brown head with two pronounced dark lines running across the head and down the nape. When part of a larger flock, Brambling are recognisable for their white rump and a yellow bill during winter.  

The NHBS Guide to UK Birds of Prey

As we enter the warmer months, many of us will find ourselves wandering through nature more often, perhaps while camping or taking an evening walk through wild areas. We might encounter birds of prey during these times, and many of us will ask ‘Which one is that?’. Here we look at a selection of the 15 birds of prey in the UK, covering every group of predatory bird aside from vultures.  


Red Kite (Milvus milvus)

A red kite shown flying from below with its wings spread out.
Red Kite. Image by Countryfile.

Conservation Status: On the Green list under the Birds of Conservation Concern 5. Listed as least concern under the IUCN Red List.  

Distribution: Widespread and common throughout the UK. Estimated 4,600 breeding pairs.  

Identification: Red Kites are large birds with a wingspan of up to 2m. Easily identified by their angled red wings, reddish-brown streaky body and a long, forked tail. These birds have a distinctive white patch underneath their black-tipped wings. Adults have a grey head and a yellow beak with a grey-black hook.  

Best places to spot: Red Kites can be seen year-round and are active during the day. They can be found in woodland, open countryside, farmland and increasingly in suburban areas and towns. The Chilterns, central Scotland and southern England are great places to spot Red Kites in the UK, although the species is commonplace and can be found across the country.  

 

Sparrowhawk (Accipiter nisus)

Grey sparrowhawk resting on a mossy treestump
Sparrowhawk. Image by Caroline Legg via Flickr.

Conservation Status: On the Amber list under the Birds of Conservation Concern 5.  

Distribution: Widespread throughout the UK except for the Scottish Highlands and offshore islands. Around 31,000 breeding pairs.   

Identification: A small bird of prey with a wingspan of around 60cm, the Sparrowhawk is around the size of a blackbird (although females can be as large as a Feral Pigeon) and weighs up to 300g. Males have a bluish-grey back and cap with white and orange barred underparts. Females are browner in colouration and have brown/grey barring on their underside. The species have broad, rounded wings and bright yellow/orange eyes. The chin and cheeks of both males and females are a reddish orange.  

Best places to spot: Sparrowhawks can be found year-round in grassland, woodland, heath and moorland, farmland and suburban areas. Good places to spot Sparrowhawks are: Bowers Marsh, Basildon; Blean Woods, Canterbury and Wolves Wood, Ipswich. The Sparrowhawk is also a good species for garden watchers – often feeding on finches, tits and sparrows, you may be fortunate enough to see one in your own garden.  

 

Peregrine Falcon (Falco peregrinus)

Peregrine Falcon resting on a tree branch
Peregrine Falcon. Image by Countryfile.

Conservation Status: On the green list under Birds of Conservation Concern 5. Protected under the Wildlife and Countryside Act 1981. 

Distribution: Nesting occurs in the north and south-west of England, also in Wales and Scotland on coastal cliffs. There are around 1,750 breeding pairs in the UK.  

Identification: The Peregrine Falcon has a large wingspan measuring up to 1.2m and a muscular, heavy-set profile. From above, this bird appears a dark slate-grey with pointed wings and a shorter tail. From below, it appears white with thin, dark stripes across the chest and belly. This species also has a white throat and cheek with a black mask and moustache. 

Best places to spot: Peregrine Falcons can be found nesting along coastal cliffs and rocky coastlines. They may also be found in urban areas as their range expands and have famously been found at the top of Derby Cathedral. Great places to spot Peregrine Falcons include Ramsey Island, Pembrokeshire; Saltholme Nature Reserve, Cleveland and Rainham Marshes Nature Reserve, Essex. 

 

Osprey (Pandion haliaetus)

Osprey flying in-air with its wings widespread
Osprey. Image via BBC Wildlife.

Conservation Status: On the amber list under Birds of Conservation Concern 5. Protected under the Wildlife and Countryside Act 1981.  

Distribution: Osprey can be seen from March to September before they migrate to west Africa for the winter.  Osprey breed in Scotland, Wales, Cumbria and the east Midlands. Breeding populations are estimated to be between 200–250 pairs.  

Identification: Ospreys are large birds with a wingspan of up to 1.7m. The species have brown and white plumage – a dark brown upper contrasting with a white chest, underside and head. The wings are long, barred and appear angled during flight.  A ‘necklace’ of slightly darker, mottled colouration may be present, and is more visible in females.  

Best places to spot: Osprey have a fish-based diet so are best spotted in freshwater and wetland habitats. Loch Ruthven, Lock Lomond and Loch of Kinnordy are reported to be good locations for Osprey spotting.  

 

Common Buzzard (Buteo buteo)

Common buzzard resting on a wooden post
Common Buzzard. Image by Caroline Legg via Flickr.

Conservation Status: On the green list under Birds of Conservation Concern 5. 

Distribution: The UK’s most common bird of prey, the Common Buzzard can be seen year-round almost everywhere in the UK. The population has an estimated 63,000 breeding pairs.  

Identification: A large bird with broad, rounded wings, the Common Buzzard has a wingspan of up to 1.2m. In flight, their wings have a distinctive ‘V’ shape with dark coloured wingtips. Their plumage can vary from shades of dark brown to paler hues, and individuals often have a ‘necklace’ of colour beneath the breast. Their underside is white, some more so than others, and their tail feathers have light brown barring. Their beak is sharp and yellow in colour with a dark brown/black hook.  

Best places to spot: Buzzards can be found in farmland, grassland, woodlands and urban areas with green spaces. West Sedgemoor Nature Reserve, Taunton; Fairy Glen, Isle of Skye and Labrador Bay, Torquay are reported to be good places to spot these birds.  

 

Kestrel (Falco tinnunculus)

Kestrel resting on a wooden fence
Kestrel by Andy Morffew via Flickr.

Conservation Status: On the amber list under Birds of Conservation Concern 5. Populations are declining.  

Distribution: This species is widespread and can be found year-round across the UK, although absent from north-west Scotland, central Wales and Shetland. There are an estimated 46,000 breeding pairs.  

Identification: Slightly larger than a Feral Pigeon, Kestrels have a wingspan up to 80cm. This species is often seen hovering mid-air, and has distinctively pointed wings. The head and tail of male Kestrels is grey, with a black band at the bottom of the tail feathers. Their backs are gingery-brown with a black-speckled cream underside. Females have a more uniform colouration, with a lighter brown plumage and dark bands on the wings and tail. The chest and underside have a lighter, almost-cream plumage with brown spots. The species have a short, yellow/grey beak with a sharp hook.  

Best places to spot: Kestrels can be found on open grassland and farmland, wetlands and urban areas. This species is often observed by roadside hedges and may be seen perching on fences or lampposts.  

 

Goshawk (Accipiter gentilis)

Goshawk resting on a mossy fallen tree
Goshawk by Andy Morffew Via Flickr

Conservation Status: On the green list under Birds of Conservation Concern 5. Protected under the Wildlife and Countryside Act 1981.  

Distribution: Found dispersed across the UK in localised populations. Strongholds are present in south and east Scotland, northern England and Wales. There are an estimated 620 breeding pairs.   

Identification: This species has a wingspan of up to 120cm and is around the size of a Buzzard. Goshawks have broad wings which appear grey on top. Females have a slate-grey upper and males have a blue-grey upper, both with white, barred underparts. The species has long, thick legs and a rounded tail. Goshawks also have a distinctive white line above their eyes.  

Best places to spot: This species can be seen year-round in wetlands, farmland and coniferous woodland. Goshawks are commonly seen in late winter and spring during aerial displays over their breeding grounds. Sites of particular interest are Kielder Forest, New Forest and the Forest of Dean.  

 

Merlin (Falco columbarius)

Merlin resting on a fence post
Merlin by Veir via Flickr.

Conservation Status: On the red list under the Birds of Conservation Concern 5. Protected under the Wildlife and Countryside Act 1981.  

Distribution: Widespread across the UK. Merlin are seen nesting in north and south-west England, Wales and Scotland. Up to 1,500 breeding pairs are estimated in the UK.  

IdentificationThe UK’s smallest bird of prey, the Merlin is around the size of a Blackbird (Turdus merula). This species is often seen low to the ground or hovering in breezy areas. Males have blue-grey plumage from above with cream-slightly brown underparts with black streaks. Females also have dark streaking underneath but are instead more brown in colour. The species has broad wings with pointed tips (wingspan up to 60cm) and a square, blunt tail. As with other raptors, they have yellow legs and a grey tipped beak.  

Best places to spot: This species can be seen year-round in moorland, coastal marshes and farmland where they nest in heather. Orkney, Loch Sunart and Dee Estuary are reported to be excellent places to spot Merlin.  

 

Tawny Owl (Strix aluco)

Tawny owl resting on a mossy tree stump in front of shallow water
Tawny Owl by Caroline Legg via Flickr

Conservation Status: On the amber list under Birds of Conservation Concern 5. 

Distribution: Widespread in the UK, but absent in Northern Ireland and the Isle of Man. An estimated 50,000 breeding pairs in the UK. 

Identification: Tawny Owls are the largest common owl in the UK and have a wingspan up to 100cm. They appear a mottled reddish-brown with a paler underside. Their large, round head has a dark ring around its border, and they have characteristically large dark eyes. The species has an olive-yellow hooked beak  

Best places to Spot: Tawny Owls can be spotted year-round in broadleaved woodland, farmland and urban green spaces. 

 

Barn Owl (Tyto alba)

Barn Owl by Caroline Legg via Flickr

Conservation Status: On the green list under Birds of Conservation Concern 5. Protected under the Wildlife and Countryside Act 1981. 

Distribution: Widespread across the UK but absent from the Scottish Highlands. An estimated 4,000 breeding pairs.  

Identification: Barn Owls are best known for their distinctive heart-shaped face and snowy white feathers. Their back and wings are mottled grey and beige, with a pure white underside. They have a white face with large black eyes and a short, curved beak.   

Best places to spot: Barn Owls can be seen year-round at dawn and dusk. The species may be seen in farmland, grassland and wetland. Strumpshaw Fen, Norfolk; Middleton Lakes, Staffordshire and Bempton Cliffs, East Riding of Yorkshire are reported to be good places to spot Barn Owls in the UK.  

This Week in Biodiversity News – 3rd June

Wildlife 

Ambitious project in south-west Wales aiming to restore one of the world’s most important habitats is getting underway. Two species of seagrass, Eelgrass (Zostera marina) and Dwarf Eelgrass (Zostera noltii) are being grown in ponds fed with seawater pumped in from the nearby Carmarthen Bay, and over the past two years alone this project has processed 1.5 million seeds. These have subsequently grown tens of thousands of plants that are now being reinstated in the wild to help restore the UK’s underwater seagrass meadows, 90% of which have vanished in the past 30 years alone. 

Photo taken with a camera lens half under water and half above water showing a thick seagrass forest.
Seagrass near body of water during daytime by Benjamin L Jones via unsplash.

Thriving Ecuador bird tourism is incentivising farmers to turn their agricultural land into nature reserves. Ecuador is home to over 1,600 species of bird, almost double the number found across the whole of Europe. As the country’s birding tourism grows, increasing numbers of farmers are turning their agricultural land into nature reserves to help preserve their stunning local wildlife. This is not only benefiting nature, but also the country’s economy as wildlife tourism offers a much more profitable livelihood than farming, resulting in some farmers expanding their land’s potential further than any traditional farming model would have provided. 

Critically endangered Devils Hole Pupfish population reaches a 25 year high. This rare species lives in the smallest known desert habitat of any vertebrate and is only found in the upper areas of a single limestone cave in the Mojave Desert, Nevada, where the whole population resides on a single shallow rock shelf. They have evolved to be able to withstand harsh desert conditions, including very high water temperatures and extremely low oxygen levels. In 2013, their population fell to just 35 individuals, but careful conservation efforts over the past 11 years have offered hope for this rare species as their population has now reached a 25-year record high of 191 fish. 

Environment 

The North Atlantic is set to be hit by more than double the normal number of hurricanes this season, warns NOAA. Researchers have suggested that this is predominantly due to high sea surface temperatures as a result of the upcoming transition between El Niño and La Niña which helps these storms grow more easily. Although there is no evidence showing that climate change is a contributing factor, it is likely to exacerbate the severity of these weather patterns. Contrastingly, NOAA have predicted a below-normal hurricane season for the central Pacific region where El Niño and La Niña work in opposition. 

Hurricane Matthew hits Haiti aerial photograph.
Hurricane Matthew hits Haiti by NASA Goddard Space Flight Center’s photostream, via flickr.

Purbeck Heath begins its transformation into an ancient savannah habitat to help precious species thrive. The National Trust’s lead ecologist for Purbeck, David Brown, explained that the project hopes to use domestic grazers such as wild cattle, pigs, ponies and deer to mimic their wild ancestors and shape the 1,370 hectares of open grassland in Dorset into a dynamic, complex and biodiverse ecosystem. Purbeck Heath is already one of the most diverse areas in the UK, and this project will aid the recovery of rare and threatened species such as Purbeck Mason Wasps, Heath Tiger Beetles and Sand Lizards. 

Climate 

Increased ocean temperatures are undercutting the Thwaites Glacier and causing glacial melt from below. This glacier is currently losing 75 billion tons of ice per year, accounting for nearly half the total ice lost from Antarctica per annum. Scientists have revealed that an estimated 150 million kilowatts of thermal power are injected into the ice with each undercutting intrusion, which could melt 20 meters of ice off the bottom of the glacier each year. Recent simulation to assess the effects saltwater invasion may have on retreat rates has revealed it could double the overall rate of ice loss for some glaciers. 

Thwaites Glacier photograph showing the edge of the glacial shelf with some small icebergs floating along the side of it.
22-01-21 04 Thwaites Glacier by Felton Davis, via flickr.

New research reveals the catastrophic effects of extreme heat, deoxygenation and acidification in the oceans due to fossil fuels and deforestation. In the top 300 meters of affected oceans, these compounded events are lasting three times longer and are six times more intense than in the 1960s. A fifth of the world’s ocean surface is susceptible to all three of these stresses at once, which has been further exacerbated in recent decades as extreme weather conditions have become more intense. Scientists warn that the extra CO2 absorbed by the oceans has increased the temperature and acidity of seawater, is dissolving the shells of sea creatures and starving the ocean of oxygen. This series of events is comparable to those experienced at the end of the Permian period 252 million years ago when the planet experienced the largest known extinction event in its history. 

No Mow May 2024: An Update

Each year, Plantlife launch their national campaign of #NoMowMay. This initiative encourages people across the UK to allow their garden lawns to grow wild in the spring, providing vital habitats for many species. Here at NHBS, this is our fourth year taking part – each year in awe of the diversity of species in our lawn. Find our previous No Mow May blog posts on our conservation hub. Here, we give an update on the species we saw throughout last month.  


The wilder lawns that develop during No Mow May provide a haven for invertebrate species in our gardens. At NHBS, we saw a whole host of insects in and around our lawn last month, from wasps to weevils and Green-veined White butterflies. Other highlights have included:  

A Small Yellow Underwing (Panemeria tenebrata) – a diurnal moth species frequenting meadows and grassland.  

 

Mayfly (Ephemera vulgata) – found near rivers and areas of freshwater between May and August.  

 

Volucella bombylans – a bumblebee-mimicking hoverfly common throughout the UK.  

 

Beautiful Demoiselle (Calopteryx virgo) – a damselfly with a striking blue, metallic body found near rivers and streams. 

 

And some beautiful wildflowers, including Red Clover (Trifolium pratense) and Perforate St John’s Wort (Hypericum perforatum). Here are some of our favourites: 

The Southern Marsh Orchid (Dactylorhiza praetermissa) – the most common and widespread of marsh orchids, features spectacular purple petals. 

 

Bee Orchid (Ophrys apifera) – named for its mimicry, the Bee Orchid self-pollinates due to a lack of appropriate pollinators in the UK. The specimen on our lawn has yet to bloom (left), but we have a striking image from last year showcasing the mimicry of this species (right).  

 

Cuckooflower (Cardamine pratensis) – also known as ‘Lady’s-smock’, this flower is one of the first signs of spring, often found near riverbanks, wet meadows and grassland. 

 

Germander Speedwell (Veronica chamaedrys) considered a ‘good luck charm’ for travellers, this plant has a beautiful blue flower and is found in meadows, woods and hedgerows across the UK. 

 

Our Product and Purchasing Manager, Mark, has documented the progress of his local park during No Mow May. Towards the end of the month, the green expanse had varying lengths of grass and plenty of wildflowers, encouraging pollinating species – a great example of how local councils can boost biodiversity in public spaces.  

 

And our Sales and Marketing Manager, Adam, has grown his lawn throughout May creating a corridor for local wildlife brimming with wild buttercups, dandelions and many other self-seeded plants.


No Mow May is a fantastic initiative to engage with, attracting homeowners, businesses and local councils with its wealth of benefits. If you have enjoyed taking part, then Let it Bloom June could be a great opportunity to continue supporting your garden wildlife. This scheme simply involves continuing the No Mow May philosophy throughout the summer with less garden maintenance. You may choose to allow your entire garden to grow wild or leave some areas untouched for wildlife.  

Have you taken part in No Mow May? Share your pictures with us via Twitter, Instagram and Facebook.  

Book Review: Crossings: How Road Ecology Is Shaping the Future of Our Planet

***** An eye-opening and thought-provoking reportage

Crossings book covering showing yellow text on top of an image of a winding road snaking through an evergreen forest.The road to hell might be paved with good intentions, but the roads to pretty much everywhere else are paved with the corpses of animals. In Crossings, environmental journalist Ben Goldfarb explores the outsized yet underappreciated impacts of the ~65 million kilometres of roads that hold the planet in a paved stranglehold. These extend beyond roadkill to numerous other insidious biological effects. The relatively young discipline of road ecology tries to gauge and mitigate them and sees biologists join forces with engineers and roadbuilders. This is a wide-ranging and eye-opening survey of the situation in the USA and various other countries.

As Goldfarb points out, roadkill is as old as the road but the phenomenon went into overdrive with the invention of the combustion engine and a new-found need for speed that menaced humans and animals alike. With the morbid curiosity typical of biologists, Dayton and Lilian Stoner published the first tally of motorcar casualties in 1925, in the process diagnosing “a malady with no name” (p. 16), as the word roadkill would not be coined for another two decades. The word road ecology was only coined in 1993 by Richard Forman, though it was translated from the German Straßenökologie that was coined in 1981 by Heinz Ellenberg.

As a discipline, road ecology both studies the impact of roads and formulates solutions. Particularly common, and featured extensively in this book, are wildlife crossings. Underpasses serve many animals but others have different needs such as overpasses or canopy rope bridges. Amphibians and reptiles are given a helping hand with toad tunnels and bucket brigades. Fish migration is being restored by retrofitting culverts that are better navigable.

An empty long, winding road running through trees going down a hill.
The long and winding road by Mussi Katz, via flickr.

To us, roads are the unnoticed connective tissue that links places of extraction with industry and commerce, and shuttles commuters between home and work. For other animals, they are barriers: despite the good intentions, wildlife crossings cannot serve all animals equally and cannot be constructed everywhere. Millions of animals still die in collisions every day. Goldfarb addresses the very real concerns of extirpation, habitat fragmentation, interrupted migrations, and noise pollution. With roads come humans who bring deforestation, hunting, real estate development, urban sprawl, tourism, etc.

Amidst this litany of harms, Goldfarb features several topics that will be eye-opening even to ecologists. There is the little-known history of how the US Forest Service constructed one of the world’s largest road networks of now mostly abandoned forest tracks. Roads also feed a diverse community of scavengers that includes humans; a necrobiome that “airbrushes our roadsides, camouflaging a crisis by devouring it” (p. 181). In Syracuse, Goldfarb faces the racist legacy of interstate highways that were bulldozed straight through Black and Latino neighbourhoods. Plans are now afoot to reverse this wrong, move the highway, and create a community where people can again walk to their destinations. In a brilliant flourish, Goldfarb connects this back to the book’s main topic: “Road ecologists and urban advocates are engaged in the same epic project: creating a world that’s amenable to feet” (p. 287).

Badbury Rings Avenue in Dorset showing a long downhill slope with large oak trees either side.
Badbury Rings Avenue – No HDR by JackPeasePhotography, via flickr.

So far, so good. Goldfarb’s writing shines and certain turns of phrase are memorable. I was initially concerned how US-centric this book would be. Though weighted towards US examples, Goldfarb also visits Wales, Costa Rica, Tasmania, and Brazil, and discusses several European initiatives.

Despite the gloomy picture, there are some encouraging signs. The US Forest Service has started decommissioning parts of its road network. Brazil, meanwhile, shows what government regulation can achieve. Here, highway operators are held legally responsible for dealing with the harm and costs resulting from collisions. Contrast this with the USA, Goldfarb observes sharply, where individual drivers are blamed for collisions. This “deflects culpability from the car companies building ever more massive SUVs and the engineers designing unsafe streets” (p. 295). As with addressing climate change, individual action only gets us so far; making roads safer demands systemic change, “a public works project, one of history’s most colossal” (p. 296).

And yet, something nagged at me. The focus on mitigation smacks of a palliative solution and Goldfarb concedes the limitations of road ecology. Crossings and fences will not stop the many other impacts of roads and risk becoming “a form of greenwashing […] a fig leaf that conceals and rationalizes destruction” (p. 265). As with other environmental problems, should we not first focus on abandoning or reducing certain behaviours, instead of turning to techno-fixes? Can we imagine something more radical? Can Goldfarb?

 

Tarmac country road running between two oil seed rape fields.
Country road and yellow field by Susanne Nilsson, via flickr.

To his credit, he admits wrestling with this problem. “The most straightforward solution to the road’s ills would be a collective rejection of automobility […] In the course of writing this book, I’ve felt, at times, like a defeatist—as though, by extolling wildlife passages, I foreclose the possibility of a more radical, carless future” (p. 295). I would have loved to see him explore this further in a dedicated chapter. Instead, Goldfarb comes down on the side of pragmatism. Bicycles and public transport are great for making urban areas more liveable, but most roadkill happens elsewhere. Furthermore, personal mobility is only part of the story, with logistics making up a huge chunk of traffic. The eye-opening chapter on Brazil, and the outsized influence of China’s Belt and Road Initiative that sees it invest in infrastructure globally, is a forceful reminder that the developmental juggernaut is nigh impossible to slow down. One road ecologist points out that you cannot seriously enter the discussion around roads if you oppose social and economic development, while another chimes in that, whether we like it or not, more roads will be built. Although I do not think resistance is futile, Goldfarb leaves me sympathetic to the road ecologists who are desperately trying to nudge construction projects in directions “that, if not quite “right,” are at least less wrong” (p. 270).

Goldfarb acknowledges the input of some 250 people and even then stresses his book is far from the final word on the subject. He encourages readers to take it as a starting point and read deeper, providing 43 pages of notes to the many sources of information he has used. I would additionally recommend A Clouded Leopard in the Middle of the Road by Australian road ecologist Darryl Jones which was published last year but seems to have flown under the radar compared to Goldfarb’s book. Overall, Crossings is a wide-ranging, eye-opening, and thought-provoking reportage that deserves top marks.